Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
F-distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===In general=== *If <math>X \sim \chi^2_{d_1}</math> and <math>Y \sim \chi^2_{d_2}</math> ([[Chi squared distribution]]) are [[independence (probability theory)|independent]], then <math> \frac{X / d_1}{Y / d_2} \sim \mathrm{F}(d_1, d_2)</math> *If <math>X_k \sim \Gamma(\alpha_k,\beta_k)\,</math> ([[Gamma distribution]]) are independent, then <math> \frac{\alpha_2\beta_1 X_1}{\alpha_1\beta_2 X_2} \sim \mathrm{F}(2\alpha_1, 2\alpha_2)</math> *If <math>X \sim \operatorname{Beta}(d_1/2,d_2/2)</math> ([[Beta distribution]]) then <math>\frac{d_2 X}{d_1(1-X)} \sim \operatorname{F}(d_1,d_2)</math> *Equivalently, if <math>X \sim F(d_1, d_2)</math>, then <math>\frac{d_1 X/d_2}{1+d_1 X/d_2} \sim \operatorname{Beta}(d_1/2,d_2/2)</math>. *If <math>X \sim F(d_1, d_2)</math>, then <math>\frac{d_1}{d_2}X</math> has a [[beta prime distribution]]: <math>\frac{d_1}{d_2}X \sim \operatorname{\beta^\prime}\left(\tfrac{d_1}{2},\tfrac{d_2}{2}\right)</math>. *If <math>X \sim F(d_1, d_2)</math> then <math>Y = \lim_{d_2 \to \infty} d_1 X</math> has the [[chi-squared distribution]] <math>\chi^2_{d_1}</math> *<math>F(d_1, d_2)</math> is equivalent to the scaled [[Hotelling's T-squared distribution]] <math>\frac{d_2}{d_1(d_1+d_2-1)} \operatorname{T}^2 (d_1, d_1 +d_2-1) </math>. *If <math>X \sim F(d_1, d_2)</math> then <math>X^{-1} \sim F(d_2, d_1)</math>. *If <math>X\sim t_{(n)}</math> β [[Student's t-distribution]] β then: <math display="block">\begin{align} X^{2} &\sim \operatorname{F}(1, n) \\ X^{-2} &\sim \operatorname{F}(n, 1) \end{align}</math> *''F''-distribution is a special case of type 6 [[Pearson distribution]] *If <math>X</math> and <math>Y</math> are independent, with <math>X,Y\sim</math> [[Laplace distribution|Laplace(''ΞΌ'', ''b'')]] then <math display="block"> \frac{|X-\mu|}{|Y-\mu|} \sim \operatorname{F}(2,2) </math> *If <math>X\sim F(n,m)</math> then <math>\tfrac{\log{X}}{2} \sim \operatorname{FisherZ}(n,m)</math> ([[Fisher's z-distribution]]) *The [[noncentral F-distribution|noncentral ''F''-distribution]] simplifies to the ''F''-distribution if <math>\lambda=0</math>. *The doubly [[noncentral F-distribution|noncentral ''F''-distribution]] simplifies to the ''F''-distribution if <math> \lambda_1 = \lambda_2 = 0 </math> *If <math>\operatorname{Q}_X(p)</math> is the quantile ''p'' for <math>X\sim F(d_1,d_2)</math> and <math>\operatorname{Q}_Y(1-p)</math> is the quantile <math>1-p</math> for <math>Y\sim F(d_2,d_1)</math>, then <math display="block">\operatorname{Q}_X(p)=\frac{1}{\operatorname{Q}_Y(1-p)}.</math> * ''F''-distribution is an instance of [[ratio distributions]] * [[Kendall's W|W]]-distribution<ref>{{Cite journal |last1=Mahmoudi |first1=Amin |last2=Javed |first2=Saad Ahmed |date=October 2022 |title=Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach |journal=Group Decision and Negotiation |language=en |volume=31 |issue=5 |pages=1051β1096 |doi=10.1007/s10726-022-09790-1 |issn=0926-2644 |pmc=9409630 |pmid=36042813}}</ref> is a unique parametrization of F-distribution.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)