Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Falling and rising factorials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Connection coefficients and identities == Falling and rising factorials are closely related to [[Stirling number|Stirling numbers]]. Indeed, expanding the product reveals [[Stirling numbers of the first kind]]<math display="block"> \begin{align} (x)_n & = \sum_{k=0}^n s(n,k) x^k \\ &= \sum_{k=0}^n \begin{bmatrix}n \\ k \end{bmatrix} (-1)^{n-k}x^k \\ x^{(n)} & = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} x^k \\ \end{align} </math> And the inverse relations uses [[Stirling numbers of the second kind]]<math display="block"> \begin{align} x^n & = \sum_{k=0}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} (x)_{k} \\ & = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{(k)} . \end{align} </math> The falling and rising factorials are related to one another through the [[Lah numbers|Lah numbers <math display="inline">L(n, k) = \binom{n-1}{k-1} \frac{n!}{k!} </math>]]:<ref name="Wolfram_functions"> {{cite web |title=Introduction to the factorials and binomials |url=http://functions.wolfram.com/GammaBetaErf/Factorial/introductions/FactorialBinomials/05/ |website=Wolfram Functions Site}} </ref><math display="block"> \begin{align} x^{(n)} & = \sum_{k=0}^n L(n,k) (x)_k \\ (x)_n & = \sum_{k=0}^n L(n,k) (-1)^{n-k} x^{(k)} \end{align} </math> Since the falling factorials are a basis for the [[polynomial ring]], one can express the product of two of them as a [[linear combination]] of falling factorials:<ref>{{cite journal|last1=Rosas|first1=Mercedes H.|year= 2002|title=Specializations of MacMahon symmetric functions and the polynomial algebra |volume=246|number=1β3|journal=Discrete Math.|doi=10.1016/S0012-365X(01)00263-1|pages=285β293|hdl=11441/41678 |hdl-access=free}}</ref> <math display="block"> (x)_m (x)_n = \sum_{k=0}^m \binom{m}{k} \binom{n}{k} k! \cdot (x)_{m+n-k} \ .</math> The coefficients <math>\tbinom{m}{k} \tbinom{n}{k} k! </math> are called ''connection coefficients'', and have a combinatorial interpretation as the number of ways to identify (or "glue together") {{mvar|k}} elements each from a set of size {{mvar|m}} and a set of size {{mvar|n}}. There is also a connection formula for the ratio of two rising factorials given by <math display="block"> \frac{x^{(n)}}{x^{(i)}} = (x+i)^{(n-i)} ,\quad \text{for }n \geq i .</math> Additionally, we can expand generalized exponent laws and negative rising and falling powers through the following identities:<ref name="Graham-Knuth-Patashnik-1988"> {{cite book |first1=Ronald L. |last1=Graham |author1-link=Ronald L. Graham |first2=Donald E. |last2=Knuth |author2-link=Donald E. Knuth |first3=Oren |last3=Patashnik |author3-link=Oren Patashnik |name-list-style=amp |year=1988 |title=[[Concrete Mathematics]] |publisher=Addison-Wesley |place=Reading, MA |isbn=0-201-14236-8 |pages=47, 48, 52 }} </ref>{{rp|style=ama|p=β―52}} <math display="block"> \begin{align} (x)_{m+n} & = (x)_m (x-m)_n = (x)_n (x-n)_m \\[6pt] x^{(m+n)} & = x^{(m)} (x+m)^{(n)} = x^{(n)} (x+n)^{(m)} \\[6pt] x^{(-n)} & = \frac{\Gamma(x-n)}{\Gamma(x)} = \frac{(x-n-1)!}{(x-1)!} = \frac{1}{(x-n)^{(n)}} = \frac{1}{(x-1)_n} = \frac{1}{(x-1)(x-2) \cdots (x-n)} \\[6pt] (x)_{-n} & = \frac{\Gamma(x+1)}{\Gamma(x+n+1)} = \frac{x!}{(x+n)!} = \frac{1}{(x+n)_n} = \frac{1}{(x+1)^{(n)}} = \frac{1}{(x+1)(x+2) \cdots (x+n)} \end{align} </math> Finally, [[duplication formula|duplication]] and [[multiplication formula]]s for the falling and rising factorials provide the next relations: <math display="block"> \begin{align} (x)_{k+mn} &= x^{(k)} m^{mn} \prod_{j=0}^{m-1} \left(\frac{x-k-j}{m}\right)_{n}\,,& \text{for } m &\in \mathbb{N} \\[6pt] x^{(k+mn)} &= x^{(k)} m^{mn} \prod_{j=0}^{m-1} \left(\frac{x+k+j}{m}\right)^{(n)},& \text{for } m &\in \mathbb{N} \\[6pt] (ax+b)^{(n)} &= x^n \prod_{j=0}^{n-1} \left(a+\frac{b+j}{x}\right),& \text{for } x &\in \mathbb{Z}^+ \\[6pt] (2x)^{(2n)} &= 2^{2n} x^{(n)} \left(x+\frac{1}{2}\right)^{(n)} . \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)