Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
True anomaly
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===From the eccentric anomaly=== The relation between the true anomaly {{mvar|Ξ½}} and the [[eccentric anomaly]] <math>E</math> is: :<math>\cos{\nu} = {{\cos{E} - e} \over {1 - e \cos{E}}}</math> or using the [[sine]]<ref>Fundamentals of Astrodynamics and Applications by David A. Vallado</ref> and [[tangent]]: :<math>\begin{align} \sin{\nu} &= {{\sqrt{1 - e^2\,} \sin{E}} \over {1 - e \cos{E}}} \\[4pt] \tan{\nu} = {{\sin{\nu}} \over {\cos{\nu}}} &= {{\sqrt{1 - e^2\,} \sin{E}} \over {\cos{E} -e}} \end{align}</math> or equivalently: :<math>\tan{\nu \over 2} = \sqrt{{{1 + e\,} \over {1-e\,}}} \tan{E \over 2}</math> so :<math>\nu = 2 \, \operatorname{arctan}\left(\, \sqrt{{{1 + e\,} \over {1 - e\,}}} \tan{E \over 2} \, \right)</math> Alternatively, a form of this equation was derived by <ref>{{cite journal | last1=Broucke | first1=R. | last2=Cefola | first2=P. | title=A Note on the Relations between True and Eccentric Anomalies in the Two-Body Problem | journal=Celestial Mechanics | year=1973 | volume=7 | issue=3 | issn=0008-8714 | doi=10.1007/BF01227859 | pages=388β389 | url=https://ui.adsabs.harvard.edu/abs/1973CeMec...7..388B/abstract | bibcode=1973CeMec...7..388B| s2cid=122878026 }}</ref> that avoids numerical issues when the arguments are near <math>\pm\pi</math>, as the two tangents become infinite. Additionally, since <math>\frac{E}{2}</math> and <math>\frac{\nu}{2}</math> are always in the same quadrant, there will not be any sign problems. :<math>\tan{\frac{1}{2}(\nu - E)} = \frac{\beta\sin{E}}{1 - \beta\cos{E}}</math> where <math> \beta = \frac{e}{1 + \sqrt{1 - e^2}} </math> so :<math>\nu = E + 2\operatorname{arctan}\left(\,\frac{\beta\sin{E}}{1 - \beta\cos{E}}\,\right)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)