Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Divisor function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other properties and identities=== [[Euler]] proved the remarkable recurrence:<ref>{{Cite arXiv |eprint = math/0411587|last1 = Euler|first1 = Leonhard|title = An observation on the sums of divisors|last2 = Bell|first2 = Jordan|year = 2004}}</ref><ref>https://scholarlycommons.pacific.edu/euler-works/175/, ''Découverte d'une loi tout extraordinaire des nombres par rapport à la somme de leurs diviseurs''</ref><ref>https://scholarlycommons.pacific.edu/euler-works/542/, ''De mirabilis proprietatibus numerorum pentagonalium''</ref> :<math>\begin{align} \sigma_1(n) &= \sigma_1(n-1)+\sigma_1(n-2)-\sigma_1(n-5)-\sigma_1(n-7)+\sigma_1(n-12)+\sigma_1(n-15)+ \cdots \\[12mu] &= \sum_{i\in\N} (-1)^{i+1}\left( \sigma_1 \left( n-\frac{1}{2} \left( 3i^2-i \right) \right) + \sigma_1 \left( n-\frac{1}{2} \left( 3i^2+i \right) \right) \right), \end{align}</math> where <math>\sigma_1(0)=n</math> if it occurs and <math>\sigma_1(x)=0</math> for <math>x < 0</math>, and <math>\tfrac{1}{2} \left( 3i^2 \mp i \right)</math> are consecutive pairs of generalized [[pentagonal numbers]] ({{OEIS2C|A001318}}, starting at offset 1). Indeed, Euler proved this by logarithmic differentiation of the identity in his [[pentagonal number theorem]]. For a non-square integer, ''n'', every divisor, ''d'', of ''n'' is paired with divisor ''n''/''d'' of ''n'' and <math>\sigma_{0}(n)</math> is even; for a square integer, one divisor (namely <math>\sqrt n</math>) is not paired with a distinct divisor and <math>\sigma_{0}(n)</math> is odd. Similarly, the number <math>\sigma_{1}(n)</math> is odd if and only if ''n'' is a square or twice a square.{{sfnp|Gioia|Vaidya|1967}} We also note ''s''(''n'') = ''σ''(''n'') − ''n''. Here ''s''(''n'') denotes the sum of the ''proper'' divisors of ''n'', that is, the divisors of ''n'' excluding ''n'' itself. This function is used to recognize [[perfect number]]s, which are the ''n'' such that ''s''(''n'') = ''n''. If ''s''(''n'') > ''n'', then ''n'' is an [[abundant number]], and if ''s''(''n'') < ''n'', then ''n'' is a [[deficient number]]. If {{mvar|n}} is a power of 2, <math>n = 2^k</math>, then <math>\sigma(n) = 2 \cdot 2^k - 1 = 2n - 1</math> and <math>s(n) = n - 1</math>, which makes ''n'' [[Almost perfect number|almost-perfect]]. As an example, for two primes <math>p,q:p<q</math>, let :<math>n = p\,q</math>. Then :<math>\sigma(n) = (p+1)(q+1) = n + 1 + (p+q), </math> :<math>\varphi(n) = (p-1)(q-1) = n + 1 - (p+q), </math> and :<math>n + 1 = (\sigma(n) + \varphi(n))/2, </math> :<math>p + q = (\sigma(n) - \varphi(n))/2, </math> where <math>\varphi(n)</math> is [[Euler phi|Euler's totient function]]. Then, the roots of :<math>(x-p)(x-q) = x^2 - (p+q)x + n = x^2 - [(\sigma(n) - \varphi(n))/2]x + [(\sigma(n) + \varphi(n))/2 - 1] = 0 </math> express ''p'' and ''q'' in terms of ''σ''(''n'') and ''φ''(''n'') only, requiring no knowledge of ''n'' or <math>p+q</math>, as :<math>p = (\sigma(n) - \varphi(n))/4 - \sqrt{[(\sigma(n) - \varphi(n))/4]^2 - [(\sigma(n) + \varphi(n))/2 - 1]}, </math> :<math>q = (\sigma(n) - \varphi(n))/4 + \sqrt{[(\sigma(n) - \varphi(n))/4]^2 - [(\sigma(n) + \varphi(n))/2 - 1]}. </math> Also, knowing {{mvar|n}} and either <math>\sigma(n)</math> or <math>\varphi(n)</math>, or, alternatively, <math>p+q</math> and either <math>\sigma(n)</math> or <math>\varphi(n)</math> allows an easy recovery of ''p'' and ''q''. In 1984, [[Roger Heath-Brown]] proved that the equality :<math>\sigma_0(n) = \sigma_0(n + 1)</math> is true for infinitely many values of {{mvar|n}}, see {{OEIS2C|A005237}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)