Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
True anomaly
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===From the mean anomaly=== The true anomaly can be calculated directly from the [[mean anomaly]] <math>M</math> via a [[Fourier expansion]]:<ref name="Battin 1999 p. 212">{{cite book | last=Battin | first=R.H. | title=An Introduction to the Mathematics and Methods of Astrodynamics | publisher=American Institute of Aeronautics & Astronautics | series=AIAA Education Series | year=1999 | isbn=978-1-60086-026-3 | url=https://books.google.com/books?id=OjH7aVhiGdcC&pg=PA212 | access-date=2022-08-02 | page=212 (Eq. (5.32))}}</ref> :<math>\nu = M + 2 \sum_{k=1}^{\infty}\frac{1}{k} \left[ \sum_{n=-\infty}^{\infty} J_n(-ke)\beta^{|k+n|} \right] \sin{kM}</math> with [[Bessel functions]] <math>J_n</math> and parameter <math>\beta = \frac{1-\sqrt{1-e^2}}{e}</math>. Omitting all terms of order <math>e^4</math> or higher (indicated by <math>\operatorname{\mathcal{O}}\left(e^4\right)</math>), it can be written as<ref name="Battin 1999 p. 212"/><ref name="Smart p. ">{{cite book | last=Smart | first=W. M. | title=Textbook on Spherical Astronomy | year=1977 | url=https://wangsajaya.files.wordpress.com/2015/02/textbook-on-spherical-astronomy-smart-6ed-1977.pdf | bibcode=1977tsa..book.....S | page=120 (Eq. (87))}}</ref><ref>{{cite book |last=Roy |first=A.E. |title=Orbital Motion |url=https://forum.fh-aachen.org/cms/index.php?attachment%2F9683-orbital-motion-fourth-edition-pdf%2F#page=78&zoom=100,0,0 |year=2005 |location=Bristol, UK; Philadelphia, PA |publisher=Institute of Physics (IoP) |edition=4 |page=78 (Eq. (4.65)) |isbn=0750310154 |bibcode=2005ormo.book.....R |access-date=2020-08-29 |archive-date=2021-05-15 |archive-url=https://web.archive.org/web/20210515142200/https://forum.fh-aachen.org/cms/index.php?attachment%2F9683-orbital-motion-fourth-edition-pdf%2F#page=78&zoom=100,0,0 |url-status=dead }}</ref> :<math>\nu = M + \left(2e - \frac{1}{4} e^3\right) \sin{M} + \frac{5}{4} e^2 \sin{2M} + \frac{13}{12} e^3 \sin{3M} + \operatorname{\mathcal{O}}\left(e^4\right).</math> Note that for reasons of accuracy this approximation is usually limited to orbits where the eccentricity <math>e</math> is small. The expression <math>\nu - M</math> is known as the [[equation of the center]], where more details about the expansion are given.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)