Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cardinality of the continuum
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Sets with cardinality of the continuum== A great many sets studied in mathematics have cardinality equal to <math>{\mathfrak c}</math>. Some common examples are the following: {{unordered list |the [[real number]]s <math>\mathbb{R}</math> |any ([[Degeneracy (mathematics)|nondegenerate]]) closed or open [[Interval (mathematics)|interval]] in <math>\mathbb{R}</math> (such as the [[unit interval]] {{nowrap|<math>[0,1]</math>)}} |the [[irrational number]]s |the [[transcendental numbers]] {{pb}} The set of real [[algebraic number]]s is countably infinite (assign to each formula its [[Gödel numbering|Gödel number]].) So the cardinality of the real algebraic numbers is {{nowrap|<math>\aleph_0</math>.}} Furthermore, the real algebraic numbers and the real transcendental numbers are disjoint sets whose union is {{nowrap|<math>\mathbb R</math>.}} Thus, since the cardinality of <math>\mathbb R</math> is {{nowrap|<math>\mathfrak c</math>,}} the cardinality of the real transcendental numbers is {{nowrap|<math>\mathfrak c - \aleph_0 = \mathfrak c</math>.}} A similar result follows for complex transcendental numbers, once we have proved that {{nowrap|<math>\left\vert \mathbb{C} \right\vert = \mathfrak c</math>.}} |the [[Cantor set]] |[[Euclidean space]] <math>\mathbb{R}^n</math><ref name=Gouvea>[http://www.maa.org/sites/default/files/pdf/pubs/AMM-March11_Cantor.pdf Was Cantor Surprised?], [[Fernando Q. Gouvêa]], ''[[American Mathematical Monthly]]'', March 2011.</ref> |the [[complex number]]s <math>\mathbb{C}</math> {{pb}} Per Cantor's proof of the cardinality of Euclidean space,<ref name=Gouvea /> {{nowrap|<math>\left\vert \mathbb{R}^2 \right\vert = \mathfrak c</math>.}} By definition, any <math>c\in \mathbb{C}</math> can be uniquely expressed as <math>a + bi</math> for some {{nowrap|<math>a,b \in \mathbb{R}</math>.}} We therefore define the bijection {{block indent|<math>\begin{align} f\colon \mathbb{R}^2 &\to \mathbb{C}\\ (a,b) &\mapsto a+bi \end{align}</math>}} |the [[power set]] of the [[natural number]]s <math>\mathcal{P}(\mathbb{N})</math> (the set of all subsets of the natural numbers) |the set of [[sequences]] of integers (i.e. all functions {{nowrap|<math>\mathbb{N} \rightarrow \mathbb{Z}</math>,}} often denoted {{nowrap|<math>\mathbb{Z}^\mathbb{N}</math>)}} |the set of sequences of real numbers, {{nowrap|<math>\mathbb{R}^\mathbb{N}</math>}} |the set of all [[continuous function|continuous]] functions from <math>\mathbb{R}</math> to <math>\mathbb{R}</math> |the [[Euclidean topology]] on <math>\mathbb{R}^n</math> (i.e. the set of all [[open set]]s in {{nowrap|<math>\mathbb{R}^n</math>)}} |the [[Borel algebra|Borel σ-algebra]] on <math>\mathbb{R}</math> (i.e. the set of all [[Borel set]]s in {{nowrap|<math>\mathbb{R}</math>).}} }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)