Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Divisor function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Series relations== Two [[Dirichlet series]] involving the divisor function are: {{sfnp|Hardy|Wright|2008|pp=326-328|loc=§17.5}} :<math>\sum_{n=1}^\infty \frac{\sigma_{a}(n)}{n^s} = \zeta(s) \zeta(s-a)\quad\text{for}\quad s>1,s>a+1,</math> where <math>\zeta</math> is the [[Riemann zeta function]]. The series for ''d''(''n'') = ''σ''<sub>0</sub>(''n'') gives: {{sfnp|Hardy|Wright|2008|pp=326-328|loc=§17.5}} : <math>\sum_{n=1}^\infty \frac{d(n)}{n^s} = \zeta^2(s)\quad\text{for}\quad s>1,</math> and a [[Ramanujan]] identity{{sfnp|Hardy|Wright|2008|pp=334-337|loc=§17.8}} :<math>\sum_{n=1}^\infty \frac{\sigma_a(n)\sigma_b(n)}{n^s} = \frac{\zeta(s) \zeta(s-a) \zeta(s-b) \zeta(s-a-b)}{\zeta(2s-a-b)},</math> which is a special case of the [[Rankin–Selberg method|Rankin–Selberg convolution]]. A [[Lambert series]] involving the divisor function is: {{sfnp|Hardy|Wright|2008|pp=338-341|loc=§17.10}} :<math>\sum_{n=1}^\infty q^n \sigma_a(n) = \sum_{n=1}^\infty \sum_{j=1}^\infty n^a q^{j\,n} = \sum_{n=1}^\infty \frac{n^a q^n}{1-q^n} = \sum_{n=1}^\infty \operatorname{Li}_{-a}(q^n)</math> for arbitrary [[complex number|complex]] |''q''| ≤ 1 and ''a'' (<math>\operatorname{Li}</math> is the [[polylogarithm]]). This summation also appears as the [[Eisenstein series#Fourier series|Fourier series of the Eisenstein series]] and the [[Weierstrass elliptic functions#Invariants|invariants of the Weierstrass elliptic functions]]. For <math>k>0</math>, there is an explicit series representation with [[Ramanujan sum]]s <math> c_m(n) </math> as :<ref>{{cite book |author=E. Krätzel |title=Zahlentheorie |publisher=VEB Deutscher Verlag der Wissenschaften |place =Berlin |year=1981 |pages=130}} (German)</ref> :<math>\sigma_k(n) = \zeta(k+1)n^k\sum_{m=1}^\infty \frac {c_m(n)}{m^{k+1}}.</math> The computation of the first terms of <math>c_m(n)</math> shows its oscillations around the "average value" <math>\zeta(k+1)n^k</math>: :<math>\sigma_k(n) = \zeta(k+1)n^k \left[ 1 + \frac{(-1)^n}{2^{k+1}} + \frac{2\cos\frac {2\pi n}{3}}{3^{k+1}} + \frac{2\cos\frac {\pi n}{2}}{4^{k+1}} + \cdots\right]</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)