Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Magnetoreception
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Taxonomic range == Magnetoreception is widely distributed taxonomically. It is present in many of the animals so far investigated. These include [[arthropod]]s, [[mollusc]]s, and among [[vertebrate]]s in fish, amphibians, reptiles, birds, and mammals. Its status in other groups remains unknown.<!--Apart from what is known from studies of birds, the mechanisms in most animals remain unknown.--><ref name="Wiltschko">{{cite book |chapter=Chapter 8 – Magnetoreception |last1=Wiltschko |first1=Roswitha |last2=Wiltschko |first2=Wolfgang |title=Sensing in Nature |volume=739 |editor=Carlos López-Larrea |year=2012 |doi=10.1007/978-1-4614-1704-0 |publisher=[[Springer Nature]] |series=Advances in Experimental Medicine and Biology |isbn=978-1-4614-1703-3 |s2cid=41131723 }}</ref> The ability to detect and respond to magnetic fields may exist in plants, possibly as in animals mediated by cryptochrome. Experiments by different scientists have identified multiple effects, including changes to growth rate, seed [[germination]], [[Mitochondrion|mitochondrial]] structure, and responses to gravity ([[geotropism]]). The results have sometimes been controversial, and no mechanism has been definitely identified. The ability may be widely distributed, but its taxonomic range in plants is unknown.<ref name="Maffei 2014">{{cite journal |last=Maffei |first=Massimo E. |title=Magnetic field effects on plant growth, development, and evolution |journal=[[Frontiers in Plant Science]] |volume=5 |date=4 September 2014 |page=445 |doi=10.3389/fpls.2014.00445 |pmid=25237317 |pmc=4154392 |doi-access=free |bibcode=2014FrPS....5..445M }}</ref> {{clade |label1=[[Eukaryote]]s |sublabel1='''''[[cryptochrome]] ''''' |1={{clade |1={{clade |label1=[[Animal]]s |1={{clade |label1=[[Vertebrate]]s |1={{clade |1=[[Fish]]es inc. [[sockeye salmon]] [[File:Sockeye salmon swimming right (cropped).jpg|80px]] |2={{clade |1=[[Amphibian]]s inc. [[cave salamander]] [[File:Cave Salamander (26370964153) (cropped).jpg|80px]] |2={{clade |1=[[Mammal]]s inc. [[big brown bat]] [[File:Big brown bat.jpg|50px]] |2={{clade |1=[[Reptile]]s inc. [[box turtle]] [[File:Florida Box Turtle, Glynn County, GA, US.jpg|65px]] |2=[[Bird]]s inc. [[homing pigeon]] [[File:A homing pigeon.jpg|50px]] }} }} }} }} |label2=[[Protostome]]s |2={{clade |label1=[[Insect]]s |1={{clade |1=[[Diptera]] inc. [[Drosophila|fruit fly]] [[File:Drosophila melanogaster - side (aka).jpg|60px]] |2=[[Hymenoptera]] inc. [[honey bee]] [[File:Ein Besucher in unserem Garten.jpg|60px]] }} |label2=[[Mollusc]]s |2=inc. [[Tochuina gigantea|giant sea slug]] [[File:Tochuina tetraquetra.jpg|70px]] }} }} }} |2=[[Plants]] inc. [[Pisum sativum|pea]] [[File:Pea seed germinating.jpg|45px]] }} }} === In molluscs === The giant sea slug ''[[Tochuina gigantea]]'' (formerly ''T. tetraquetra''), a [[mollusc]], orients its body between north and east prior to a full moon.<ref name="Lohmann Willows 1987">{{cite journal |last1=Lohmann |first1=K. J. |last2=Willows |first2=A. O. D. |year=1987 |title=Lunar-Modulated Geomagnetic Orientation by a Marine Mollusk |journal=[[Science (journal)|Science]] |volume=235 |issue=4786 |pages=331–334 |doi=10.1126/science.3798115 |pmid=3798115 |bibcode=1987Sci...235..331L }}</ref> A 1991 experiment offered a right turn to geomagnetic south and a left turn to geomagnetic east (a [[Y maze|Y-shaped maze]]). 80% of ''Tochuina'' made a turn to magnetic east. When the field was reversed, the animals displayed no preference for either turn.<ref>{{cite journal |last1=Lohmann |first1=K. J. |last2=Willows |last3=Pinter |first3=R. B. |year=1991 |title=An identifiable molluscan neuron responds to changes in earth-strength magnetic fields |journal=[[Journal of Experimental Biology]] |volume=161 |issue=1 |pages=1–24 |doi=10.1242/jeb.161.1.1 |pmid=1757771 |doi-access=free |bibcode=1991JExpB.161....1L }}</ref><ref name="Wang Cain Lohmann pp. 1043–1049" /> ''Tochuina''{{'}}s nervous system is composed of individually identifiable [[neuron]]s, four of which are stimulated by changes in the applied magnetic field, and two which are inhibited by such changes.<ref name="Wang Cain Lohmann pp. 1043–1049">{{cite journal |last1=Wang |first1=John H. |last2=Cain |first2=Shaun D. |last3=Lohmann |first3=Kenneth J. |title=Identifiable neurons inhibited by Earth-strength magnetic stimuli in the mollusc Tritonia diomedea |journal=[[Journal of Experimental Biology]] |volume=207 |issue=6 |date=22 February 2004 |doi=10.1242/jeb.00864 |pages=1043–1049|pmid=14766962 |s2cid=13439801 |url=https://cdr.lib.unc.edu/downloads/p8418x70f |doi-access=free |bibcode=2004JExpB.207.1043W }}</ref> The tracks of the similar species ''[[Tritonia exsulans]]'' become more variable in direction when close to strong [[rare-earth magnet]]s placed in their natural habitat, suggesting that the animal uses its magnetic sense continuously to help it travel in a straight line.<ref name="Wyeth Holden Jalala Murray 2021">{{cite journal |last1=Wyeth |first1=Russell C. |last2=Holden |first2=Theora |last3=Jalala |first3=Hamed |last4=Murray |first4=James A. |title=Rare-Earth Magnets Influence Movement Patterns of the Magnetically Sensitive Nudibranch Tritonia exsulans in Its Natural Habitat |journal=[[The Biological Bulletin]] |volume=240 |issue=2 |date=1 April 2021 |doi=10.1086/713663 |pages=105–117|pmid=33939940 |s2cid=233485664 }}</ref> === In insects === The fruit fly ''[[Drosophila melanogaster]]'' may be able to orient to magnetic fields. In one [[Preference tests (animals)|choice test]], flies were loaded into an apparatus with two arms that were surrounded by electric coils. Current was run through each of the coils, but only one was configured to produce a 5-Gauss magnetic field (about ten times stronger than the Earth's magnetic field) at a time. The flies were trained to associate the magnetic field with a sucrose reward. Flies with an altered cryptochrome, such as with an antisense mutation, were not sensitive to magnetic fields.<ref name="Gegear2008">{{cite journal |last1=Gegear |first1=Robert J. |last2=Casselman |first2=Amy |last3=Waddell |first3=Scott |last4=Reppert |first4=Steven M. |date=August 2008 |title=Cryptochrome mediates light-dependent magnetosensitivity in ''Drosophila'' |journal=[[Nature (journal)|Nature]] |volume=454 |issue=7207 |pages=1014–1018 |bibcode=2008Natur.454.1014G |doi=10.1038/nature07183 |pmc=2559964 |pmid=18641630}}</ref> Magnetoreception has been studied in detail in insects including [[honey bee]]s, [[ant]]s and [[termite]]s.<ref name="Pereira-Bomfim 2015">{{cite journal |last1=Pereira-Bomfim |first1=M.D.G.C. |last2=Antonialli-Junior |first2=W.F. |last3=Acosta-Avalos |first3=D. |year=2015 |title=Effect of magnetic field on the foraging rhythm and behavior of the swarm-founding paper wasp Polybia paulista Ihering (hymenoptera: vespidae) |journal=Sociobiology |volume=62 |issue=1 |pages=99–104 |doi=<!-- BROKEN! (2022) 10.13102/sociobiology.v62i1.99-104 |doi-access=free--> |url=https://www.researchgate.net/publication/277898225}}</ref> Ants and bees navigate using their magnetic sense both locally (near their nests) and when migrating.<ref name="Wajnberg 2010">{{cite journal |last1=Wajnberg |first1=E. |author2=Acosta-Avalos, D. |author3=Alves, O.C. |author4=de Oliveira, J.F. |author5=Srygley, R.B. |author6=Esquivel, D.M. |year=2010 |title=Magnetoreception in eusocial insects: An update |journal=[[Journal of the Royal Society Interface]] |volume=7 |issue=Suppl 2 |pages=S207–S225 |doi=10.1098/rsif.2009.0526.focus |pmid=20106876 |pmc=2843992}}</ref> In particular, the Brazilian stingless bee ''[[Schwarziana quadripunctata]]'' is able to detect magnetic fields using the thousands of hair-like [[sensillum|sensilla]] on its antennae.<ref name="Esquivel 2005">{{cite journal |last1=Esquivel |first1=Darci M.S. |last2=Wajnberg |first2=E. |last3=do Nascimento |first3=F.S. |last4=Pinho |first4=M.B. |last5=Lins de Barros |first5=H.G.P. |last6=Eizemberg |first6=R. |year=2005 |title=Do Magnetic Storms Change Behavior of the Stingless Bee Guiriçu (''Schwarziana quadripunctata'')? |journal=[[Naturwissenschaften]] |volume=94 |issue=2 |pages=139–142 |doi=10.1007/s00114-006-0169-z |pmid=17028885|s2cid=10746883 }}</ref><ref name="Lucano 2005">{{cite journal |last1=Lucano |first1=M.J. |last2=Cernicchiaro |first2=G. |last3=Wajnberg |first3=E. |last4=Esquivel |first4=D.M.S. |year=2005 |title=Stingless Bee Antennae: A Magnetic Sensory Organ? |journal=[[BioMetals (journal)|BioMetals]] |volume=19 |issue=3 |pages=295–300 |doi=10.1007/s10534-005-0520-4 |pmid=16799867 |s2cid=10162385 }}</ref> === In vertebrates === ==== In fish ==== Studies of magnetoreception in [[bony fish]] have been conducted mainly with salmon. Both [[sockeye salmon]] (''Oncorhynchus nerka'') and [[Chinook salmon]] (''Oncorhynchus tschawytscha'') have a compass sense. This was demonstrated in experiments in the 1980s by changing the axis of a magnetic field around a circular tank of young fish; they reoriented themselves in line with the field.<ref name="Quinn 1980">{{cite journal |last=Quinn |first=Thomas P. |date=1980 |title=Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry |journal=[[Journal of Comparative Physiology A]] |volume=137 |issue=3 |pages=243–248 |doi=10.1007/bf00657119 |s2cid=44036559 }}</ref><ref name="Taylor 1986">{{cite journal |last=Taylor |first=P. B. |date=May 1986 |title=Experimental evidence for geomagnetic orientation in juvenile salmon, Oncorhynchus tschawytscha Walbaum |journal=[[Journal of Fish Biology]] |volume=28 |issue=5 |pages=607–623 |doi=10.1111/j.1095-8649.1986.tb05196.x |bibcode=1986JFBio..28..607T }}</ref> ==== In amphibians ==== Some of the earliest studies of amphibian magnetoreception were conducted with [[cave salamander]]s (''Eurycea lucifuga''). Researchers housed groups of cave salamanders in corridors aligned with either magnetic north–south, or magnetic east–west. In tests, the magnetic field was experimentally rotated by 90°, and salamanders were placed in cross-shaped structures (one corridor along the new north–south axis, one along the new east–west axis). The salamanders responded to the field's rotation.<ref name=":Phillips 1977">{{cite journal |last=Phillips |first=John B. |date=1977 |title=Use of the earth's magnetic field by orienting cave salamanders (Eurycea lucifuga) |journal=[[Journal of Comparative Physiology]] |volume=121 |issue=2 |pages=273–288 |doi=10.1007/bf00609616 |s2cid=44654348 }}</ref> [[Eastern newt|Red-spotted newts]] (''Notophthalmus viridescens'') respond to drastic increases in water temperature by heading for land. The behaviour is disrupted if the magnetic field is experimentally altered, showing that the newts use the field for orientation.<ref name="Phillips 1986 newt">{{cite journal |last=Phillips |first=John B. |date=1986 |title=Magnetic compass orientation in the Eastern red-spotted newt (Notophthalmus viridescens) |journal=[[Journal of Comparative Physiology A]] |volume=158 |issue=1 |pages=103–109 |doi=10.1007/bf00614524 |pmid=3723427 |s2cid=25252103 }}</ref><ref name="Phillips 1986 salamander">{{cite journal |last=Phillips |first=John B. |date=15 August 1986 |title=Two magnetoreception pathways in a migratory salamander |journal=[[Science (journal)|Science]] |volume=233 |issue=4765 |pages=765–767 |doi=10.1126/science.3738508 |pmid=3738508 |bibcode=1986Sci...233..765P |s2cid=28292152 }}</ref> Both [[Common toad|European toads]] (''Bufo bufo'') and [[natterjack toad]]s (''Epidalea calamita)'' toads rely on vision and olfaction when migrating to breeding sites, but magnetic fields may also play a role. When randomly displaced {{Convert|150|m|ft}} from their breeding sites, these toads can navigate their way back,<ref name=":12">{{cite journal |last=Sinsch |first=Ulrich |date=1987 |title=Orientation behaviour of toads (Bufo bufo) displaced from the breeding site |journal=[[Journal of Comparative Physiology A]] |volume=161 |issue=5 |pages=715–727 |doi=10.1007/bf00605013 |pmid=3119823 |s2cid=26102029 }}</ref> but this ability can be disrupted by fitting them with small magnets.<ref name=":6">{{cite journal |last=Sinsch |first=Ulrich |date=January 1992 |title=Sex-biassed site fidelity and orientation behaviour in reproductive natterjack toads (Bufo calamita) |journal=[[Ethology Ecology & Evolution]] |volume=4 |issue=1 |pages=15–32 |doi=10.1080/08927014.1992.9525347 |bibcode=1992EtEcE...4...15S }}</ref> ==== In reptiles ==== [[File:Leatherback Turtle eggs hatching at Eagle Beach, Aruba (cropped).jpg|thumb|upright=1.5|Magnetoreception plays a part in guiding [[Loggerhead sea turtle|loggerhead]] hatchlings to the sea<ref name="Lohmann et al 2022"/>]] The majority of study on magnetoreception in reptiles involves turtles. Early support for magnetoreception in turtles was provided in a 1991 study on hatchling [[Loggerhead sea turtle|loggerhead]] turtles which demonstrated that loggerheads can use the magnetic field as a compass to determine direction.<ref name="Lohmann 1991">{{cite journal |last=Lohmann |first= K.J. |date=1991 |title=Magnetic orientation by hatchling loggerhead sea turtles (''Caretta caretta'')|journal=Journal of Experimental Biology |volume=155 |issue= 1 |pages=37–49|doi= 10.1242/jeb.155.1.37 |pmid= 2016575 |doi-access=free |bibcode= 1991JExpB.155...37L }}</ref> Subsequent studies have demonstrated that loggerhead and green turtles can also use the magnetic field of the earth as a map, because different parameters of the Earth's magnetic field vary with geographic location. The map in sea turtles was the first ever described though similar abilities have now been reported in lobsters, fish, and birds.<ref name="Lohmann et al 2022">{{cite journal |last1=Lohmann |first1= Kenneth J. |last2=Goforth |first2=Kayla M.|last3=Mackiewicz | first3=Alayna G. |last4=Lim |first4=Dana S.|last5=Lohmann |first5 =Catherine M.F. |date=2022 |title=Magnetic maps in animal navigation |journal=Journal of Comparative Physiology A |volume=208 |issue=1 |pages=41–67 |doi=10.1007/s00359-021-01529-8 |doi-access=free |pmid=34999936 |pmc=8918461 }}</ref> Magnetoreception by land turtles was shown in a 2010 experiment on ''Terrapene carolina'', a [[box turtle]]. After teaching a group of these box turtles to swim to either the east or west end of an experimental tank, a strong magnet disrupted the learned routes.<ref name="Mathis Moore 2010">{{cite journal |last1=Mathis |first1=Alicia |last2=Moore |first2=Frank R. |date=26 April 2010 |title=Geomagnetism and the Homeward Orientation of the Box Turtle, ''Terrapene Carolina'' |journal=[[Ethology (journal)|Ethology]] |volume=78 |issue=4 |pages=265–274 |doi=10.1111/j.1439-0310.1988.tb00238.x}}</ref><ref name="Stehli 1996">{{cite book |title=Magnetite Biomineralization and Magnetoreception in Organisms: A new biomagnetism |last=Stehli |first= F. G. |date=1996 |publisher=Springer |isbn=978-1-4613-0313-8 |oclc=958527742}}</ref> Orientation toward the sea, as seen in turtle hatchlings, may rely partly on magnetoreception. In [[Loggerhead sea turtle|loggerhead]] and [[Leatherback sea turtle|leatherback]] turtles, breeding takes place on beaches, and, after hatching, offspring crawl rapidly to the sea. Although differences in light density seem to drive this behaviour, magnetic alignment appears to play a part. For instance, the natural directional preferences held by these hatchlings (which lead them from beaches to the sea) reverse upon experimental inversion of the magnetic poles.<ref name="Merrill Salmon 2010">{{cite journal |last1=Merrill |first1=Maria W. |last2=Salmon |first2=Michael |date=30 September 2010 |title=Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta) from the Gulf of Mexico |journal=[[Marine Biology (journal)|Marine Biology]] |volume=158 |issue=1 |pages=101–112 |doi=10.1007/s00227-010-1545-y |s2cid=84391053 }}</ref> ==== In birds ==== [[Homing pigeon]]s use magnetic fields as part of their complex [[Animal navigation|navigation]] system.<ref>{{cite journal |last1=Walcott |first1=C. |year=1996 |title=Pigeon homing: observations, experiments and confusions |journal=[[Journal of Experimental Biology]] |volume=199 |issue=Pt 1 |pages=21–27 |doi=10.1242/jeb.199.1.21 |pmid=9317262 |bibcode=1996JExpB.199...21W }}</ref> [[William Tinsley Keeton|William Keeton]] showed that time-shifted homing pigeons (acclimatised in the laboratory to a different time-zone) are unable to orient themselves correctly on a clear, sunny day; this is attributed to time-shifted pigeons being unable to compensate accurately for the movement of the sun during the day. Conversely, time-shifted pigeons released on overcast days navigate correctly, suggesting that pigeons can use magnetic fields to orient themselves; this ability can be disrupted with magnets attached to the birds' backs.<ref>{{cite journal |last=Keeton |first=W. T. |year=1971 |title=Magnets interfere with pigeon homing |journal=[[PNAS]] |volume=68 |issue=1 |pages=102–106 |pmc=391171 |doi=10.1073/pnas.68.1.102 |pmid=5276278 |bibcode=1971PNAS...68..102K |doi-access=free }}</ref><ref name="Gould, J. L. 1984">{{cite journal |last1=Gould |first1=J. L. |year=1984 |title=Magnetic field sensitivity in animals |journal=[[Annual Review of Physiology]] |volume=46 |pages=585–598 |doi=10.1146/annurev.ph.46.030184.003101 |pmid=6370118 }}</ref> Pigeons can detect magnetic anomalies as weak as 1.86 [[Gauss (unit)|gauss]].<ref name="ReferenceA">{{cite journal |last1=Mora |first1=C. V. |last2=Davison |first2=M. |last3=Wild |first3=J. M. |last4=Walker |first4=M. M. |year=2004 |title=Magnetoreception and its trigeminal mediation in the homing pigeon |journal=[[Nature (journal)|Nature]] |volume=432 |issue=7016 |pages=508–511 |doi=10.1038/nature03077 |pmid=15565156 |bibcode=2004Natur.432..508M |s2cid=2485429 }}</ref> For a long time the [[Trigeminal nerve|trigeminal]] system was the suggested location for a magnetite-based magnetoreceptor in the pigeon. This was based on two findings: First, magnetite-containing cells were reported in specific locations in the upper beak.<ref name="Fleissner2003" /> However, the cells proved to be immune system [[macrophage]]s, not [[neuron]]s able to detect magnetic fields.<ref name="Treiber2012" /><ref name="Engels 20180124">{{cite journal |last1=Engels |first1=Svenja |last2=Treiber |first2=Christoph Daniel |last3=Salzer |first3=Marion Claudia |last4=Michalik |first4=Andreas |last5=Ushakova |first5=Lyubo v|last6=Keays |first6=David Anthony |last7=Mouritsen |first7=Henrik |last8=Heyers |first8=Dominik |display-authors=3 |date=1 August 2018 |title=Lidocaine is a nocebo treatment for trigeminally mediated magnetic orientation in birds |journal=[[Journal of the Royal Society Interface]] |volume=15 |issue=145 |pages=20180124 |doi=10.1098/rsif.2018.0124 |pmc=6127160 |pmid=30089685}}</ref> Second, pigeon magnetic field detection is impaired by sectioning the trigeminal nerve and by application of [[lidocaine]], an anaesthetic, to the olfactory mucosa.<ref>{{cite journal |last1=Wiltschko |first1=Roswitha |last2=Schiffner |first2=Ingo |last3=Fuhrmann |first3=Patrick |last4=Wiltschko |first4=Wolfgang |date=September 2010 |title=The Role of the Magnetite-Based Receptors in the Beak in Pigeon Homing |journal=[[Current Biology]] |volume=20 |issue=17 |pages=1534–1538 |doi=10.1016/j.cub.2010.06.073 |pmid=20691593 |bibcode=1996CBio....6.1213A |s2cid=15896143 |doi-access=free }}</ref> However, lidocaine treatment might lead to unspecific effects and not represent a direct interference with potential magnetoreceptors.<ref name="Engels 20180124" /> As a result, an involvement of the trigeminal system is still debated. In the search for magnetite receptors, a large iron-containing organelle (the [[cuticulosome]]) of unknown function was found in the inner ear of pigeons.<ref>{{cite journal |last1=Lauwers |first1=Mattias |last2=Pichler |first2=Paul |last3=Edelman |first3=Nathaniel Bernard |last4=Resch |first4=Guenter Paul |last5=Ushakova |first5=Lyubov |last6=Salzer |first6=Marion Claudia |last7=Heyers |first7=Dominik |last8=Saunders |first8=Martin |last9=Shaw |first9=Jeremy |display-authors=3 |date=May 2013 |title=An Iron-Rich Organelle in the Cuticular Plate of Avian Hair Cells |journal=[[Current Biology]] |volume=23 |issue=10 |pages=924–929 |doi=10.1016/j.cub.2013.04.025 |pmid=23623555 |bibcode=1996CBio....6.1213A|s2cid=9052155 |doi-access=free }}</ref><ref>{{cite journal |last1=Nimpf |first1=Simon |last2=Malkemper |first2=Erich Pascal |last3=Lauwers |first3=Mattias |last4=Ushakova |first4=Lyubov |last5=Nordmann |first5=Gregory |last6=Wenninger-Weinzierl |first6=Andrea |last7=Burkard |first7=Thomas R |last8=Jacob |first8=Sonja |last9=Heuser |first9=Thomas |display-authors=3 |date=15 November 2017 |title=Subcellular analysis of pigeon hair cells implicates vesicular trafficking in cuticulosome formation and maintenance |journal=[[eLife]] |volume=6 |doi=10.7554/elife.29959 |pmc=5699870 |pmid=29140244 |doi-access=free }}</ref> Areas of the pigeon brain that respond with increased activity to magnetic fields are the posterior [[vestibular nuclei]], [[dorsal thalamus]], [[hippocampus]], and [[Avian pallium|visual hyperpallium]].<ref>{{cite journal |last1=Wu |first1=L.-Q. |last2=Dickman |first2=J. D. |year=2011 |title=Magnetoreception in an avian brain in part mediated by inner ear lagena |journal=[[Current Biology]] |volume=21 |issue=5 |pages=418–23 |doi=10.1016/j.cub.2011.01.058 |pmid=21353559 |pmc=3062271 |bibcode=2011CBio...21..418W }}</ref> [[Chicken|Domestic hens]] have iron mineral deposits in the sensory [[dendrites]] in the upper beak and are capable of magnetoreception.<ref name="Falkenberg2010" /><ref name="Wiltschko et al., 2007">{{cite journal |last1=Wiltschko |first1=Wolfgang |last2=Freire |first2=Rafael |last3=Munro |first3=Ursula |last4=Ritz |first4=Thorsten |last5=Rogers |first5=Lesley |last6=Thalau |first6=Peter |last7=Wiltschko |first7=Roswitha |title=The magnetic compass of domestic chickens, ''Gallus gallus'' |journal=[[Journal of Experimental Biology]] |volume=210 |issue=13 |date=1 July 2007 |doi=10.1242/jeb.004853 |pages=2300–2310 |pmid=17575035 |bibcode=2007JExpB.210.2300W |s2cid=9163408 |hdl=10453/5735 |hdl-access=free }}</ref> Beak trimming causes loss of the magnetic sense.<ref name="Freire et al., 2011">{{cite journal |last1=Freire |first1=R. |last2=Eastwood |first2=M. A. |last3=Joyce |first3=M. |year=2011 |title=Minor beak trimming in chickens leads to loss of mechanoreception and magnetoreception |journal=[[Journal of Animal Science]] |volume=89 |issue=4 |pages=1201–1206 |doi=10.2527/jas.2010-3129 |pmid=21148779 }}</ref> ==== In mammals ==== Some mammals are capable of magnetoreception. When [[wood mouse|woodmice]] are removed from their home area and deprived of visual and olfactory cues, they orient towards their homes until an inverted magnetic field is applied to their cage.<ref>{{cite journal |last1=Mather |first1=J. G. |last2=Baker |first2=R. R. |year=1981 |title=Magnetic sense of direction in woodmice for route-based navigation |journal=[[Nature (journal)|Nature]] |volume=291 |issue=5811 |pages=152–155 |doi=10.1038/291152a0 |bibcode=1981Natur.291..152M |s2cid=4262309 }}</ref> When the same mice are allowed access to visual cues, they are able to orient themselves towards home despite the presence of inverted magnetic fields. This indicates that woodmice use magnetic fields to orient themselves when no other cues are available. The magnetic sense of woodmice is likely based on a radical-pair mechanism.<ref>{{cite journal |last1=Malkemper |first1=E. Pascal |last2=Eder |first2=Stephan H. K. |last3=Begall |first3=Sabine |last4=Phillips |first4=John B. |last5=Winklhofer |first5=Michael |last6=Hart |first6=Vlastimil |last7=Burda |first7=Hynek |date=29 April 2015 |title=Magnetoreception in the wood mouse ( Apodemus sylvaticus ): influence of weak frequency-modulated radio frequency fields |journal=[[Scientific Reports]] |volume=5 |issue=1 |page=9917 |doi=10.1038/srep09917 |pmc=4413948 |pmid=25923312 |bibcode=2015NatSR...4.9917M}}</ref> [[File:Graumull IMG 4039.jpg|thumb|The [[Zambian mole-rat]] is one of several mammals that use magnetic fields, in their case for nest orientation.<ref name="Nemec 2001" />]] The [[Zambian mole-rat]], a subterranean mammal, uses magnetic fields to aid in nest orientation.<ref name="Marhold Wiltschko Burda">{{cite journal |title=A magnetic polarity compass for direction finding in a subterranean mammal |last1=Marhold |first1=S. |last2=Wiltschko |first2=Wolfgang |last3=Burda |first3=H. |year=1997 |journal=[[The Science of Nature|Naturwissenschaften]] |volume=84 |issue=9 |pages=421–423 |doi=10.1007/s001140050422 |bibcode=1997NW.....84..421M |s2cid=44399837 }}</ref> In contrast to woodmice, Zambian mole-rats do not rely on radical-pair based magnetoreception, perhaps due to their subterranean lifestyle. Experimental exposure to magnetic fields leads to an increase in neural activity within the [[superior colliculus]], as measured by immediate [[gene expression]]. The activity level of neurons within two levels of the superior colliculus, the outer sublayer of the intermediate gray layer and the deep gray layer, were elevated in a non-specific manner when exposed to various magnetic fields. However, within the inner sublayer of the intermediate gray layer (InGi) there were two or three clusters of cells that respond in a more specific manner. The more time the mole rats were exposed to a magnetic field, the greater the immediate early gene expression within the InGi.<ref name="Nemec 2001">{{cite journal |last1=Nemec |first1=P. |last2=Altmann |first2=J. |last3=Marhold |first3=S. |last4=Burda |first4=H. |last5=Oelschlager |first5=H. H. |year=2001 |title=Neuroanatomy of magnetoreception: The superior colliculus involved in magnetic orientation in a mammal |journal=[[Science (journal)|Science]] |volume=294 |issue=5541 |pages=366–368 |doi=10.1126/science.1063351 |pmid=11598299 |bibcode=2001Sci...294..366N |s2cid=41104477 }}</ref> Magnetic fields appear to play a role in [[bat]] orientation. They use [[Animal echolocation|echolocation]] to orient themselves over short distances, typically ranging from a few centimetres up to 50 metres.<ref>{{cite journal |last1=Boonman |first1=Arjan |last2=Bar-On |first2=Yinon |last3=Yovel |first3=Yossi |date=2013-09-11 |title=It's not black or white—on the range of vision and echolocation in echolocating bats |journal=[[Frontiers in Physiology]] |volume=4 |page=248 |doi=10.3389/fphys.2013.00248 |doi-access=free |pmid=24065924 |issn=1664-042X|pmc=3769648 }}</ref> When non-migratory big brown bats (''[[Eptesicus fuscus]]'') are taken from their home roosts and exposed to magnetic fields rotated 90 degrees from magnetic north, they become disoriented; it is unclear whether they use the magnetic sense as a map, a compass, or a compass calibrator.<ref>{{cite journal |last1=Holland |first1=R. A. |last2=Thorup |first2=K. |last3=Vonhof |first3=M. J. |last4=Cochran |first4=W. W. |last5=Wikelski |first5=M. |year=2006 |title=Bat orientation using Earth's magnetic field |journal=[[Nature (journal)|Nature]] |volume=444 |issue=7120 |page=702 |doi=10.1038/444702a |pmid=17151656 |bibcode=2006Natur.444..702H |s2cid=4379579 |doi-access=free }}</ref> Another bat species, the greater mouse-eared bat (''[[Myotis myotis]]''), appears to use the Earth's magnetic field in its home range as a compass, but needs to calibrate this at sunset or dusk.<ref name="Holland Borissov Siemers 2010">{{cite journal |last1=Holland |first1=Richard A. |last2=Borissov |first2=Ivailo |last3=Siemers |first3=Björn M. |title=A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun |journal=[[PNAS]] |volume=107 |issue=15 |date=29 March 2010 |issn=0027-8424 |doi=10.1073/pnas.0912477107 |pages=6941–6945|pmid=20351296 |pmc=2872435 |bibcode=2010PNAS..107.6941H |doi-access=free }}</ref> In migratory soprano pipistrelles (''[[Soprano pipistrelle|Pipistrellus pygmaeus]]''), experiments using mirrors and [[Helmholtz coil]]s show that they calibrate the magnetic field using the position of the solar disk at sunset.<ref>{{cite journal |last1=Lindecke |first1=Oliver |last2=Elksne |first2=Alise |last3=Holland |first3=Richard A. |last4=Pētersons |first4=Gunārs |last5=Voigt |first5=Christian C. |date=April 2019 |title=Experienced Migratory Bats Integrate the Sun's Position at Dusk for Navigation at Night |url=http://dx.doi.org/10.1016/J.CUB.2019.03.002 |journal=Current Biology |volume=29 |issue=8 |pages=1369–1373.e3 |doi=10.1016/j.cub.2019.03.002 |pmid=30955934 |bibcode=2019CBio...29E1369L |issn=0960-9822}}</ref><ref>{{cite journal |last1=Schneider |first1=William T. |last2=Holland |first2=Richard A. |last3=Keišs |first3=Oskars |last4=Lindecke |first4=Oliver |date=November 2023 |title=Migratory bats are sensitive to magnetic inclination changes during the compass calibration period |journal=[[Biology Letters]] |volume=19 |issue=11 |doi=10.1098/rsbl.2023.0181 |issn=1744-957X |pmc=10684344 |pmid=38016643}}</ref> [[Red fox]]es (''Vulpes vulpes'') may be influenced by the Earth's magnetic field when [[Predation|predating]] small rodents like mice and voles. They attack these prey using a specific high-jump, preferring a north-eastern compass direction. Successful attacks are tightly clustered to the north.<ref>{{cite web |last=Cressey |first=Daniel |title=Fox 'rangefinder' sense expands the magnetic menagerie |url=http://blogs.nature.com/news/2011/01/fox_rangefinder_sense_expands.html |date=12 January 2011 |publisher=[[Nature Publishing Group]] / Macmillan |access-date=6 June 2014 |pages=<!--This is an official blog of the journal ''Nature'', and subject to editorial control.--> |archive-date=24 June 2014 |archive-url=https://web.archive.org/web/20140624052523/http://blogs.nature.com/news/2011/01/fox_rangefinder_sense_expands.html |url-status=dead }}</ref> There is not yet a consensus on whether humans can sense magnetic fields or not, but it is being studied and some researchers have found evidence suggesting it.<ref name="Wang Hilburn Wu 2019">{{cite journal |last1=Wang |first1=Connie X. |last2=Hilburn |first2=Isaac A. |last3=Wu |first3=Daw-An |last4=Mizuhara |first4=Yuki |last5=Cousté |first5=Christopher P. |last6=Abrahams |first6=Jacob N. H. |last7=Bernstein |first7=Sam E. |last8=Matani |first8=Ayumu |last9=Shimojo |first9=Shinsuke |last10=Kirschvink |first10=Joseph L. |display-authors=3 |title=Transduction of the Geomagnetic Field as Evidenced from alpha-Band Activity in the Human Brain |journal=eNeuro |publisher=Society for Neuroscience |volume=6 |issue=2 |year=2019 |issn=2373-2822 |doi=10.1523/eneuro.0483-18.2019 |pages=ENEURO.0483–18.2019|pmid=31028046 |pmc=6494972 }}</ref><ref name="Chae Human magnetic sense">{{cite journal |last1=Chae |first1=Kwon-Seok |last2=Kim |first2=Soo-Chan |last3=Kwon |first3=Hye-Jin |last4=Kim |first4=Yongkuk |title=Human magnetic sense is mediated by a light and magnetic field resonance-dependent mechanism |journal=Scientific Reports |date=30 May 2022 |volume=12 |issue=1 |page=8997 |doi=10.1038/s41598-022-12460-6 |pmid=35637212 |pmc=9151822 |bibcode=2022NatSR..12.8997C }}</ref> The [[ethmoid bone]] in the nose contains magnetic materials.<ref name="Carrubba Frilot">{{cite journal |title=Evidence of a nonlinear human magnetic sense |journal=Neuroscience |doi=10.1016/j.neuroscience.2006.08.068 |date=5 January 2007 |volume=144 |issue=1 |pages=356–357 |last1=Carrubba |first1=S. |last2=Frilot |first2=C. |last3=Chesson |first3=A.L. |last4=Marino |first4=A.A. |pmid=17069982 |s2cid=34652156 }}</ref><ref name="Chae Human magnetic sense"/> Magnetosensitive cryptochrome 2 (cry2) is present in the human retina.<ref name="Foley 2011"/> Human alpha [[brain wave]]s are affected by magnetic fields, but it is not known whether behaviour is affected.<ref name="Wang Hilburn Wu 2019"/><ref name="Foley 2011">{{cite journal |last1=Foley |first1=Lauren E. |last2=Gegear |first2=Robert J. |last3=Reppert |first3=Steven M. |title=Human cryptochrome exhibits light-dependent magnetosensitivity |journal=[[Nature Communications]] |date=2011 |volume=2 |page=356 |doi=10.1038/ncomms1364 |bibcode=2011NatCo...2..356F |pmid=21694704 |pmc=3128388}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)