Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Carmichael function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Function in mathematical number theory}} In [[number theory]], a branch of [[mathematics]], the '''Carmichael function''' {{math | ''λ''(''n'')}} of a [[positive integer]] {{mvar | n}} is the smallest positive integer {{mvar|m}} such that :<math>a^m \equiv 1 \pmod{n}</math> holds for every integer {{mvar | a}} [[coprime]] to {{mvar | n}}. In algebraic terms, {{math | ''λ''(''n'')}} is the [[exponent of a group|exponent]] of the [[multiplicative group of integers modulo n|multiplicative group of integers modulo {{mvar | n}}]]. As this is a [[Abelian group#Finite abelian groups|finite abelian group]], there must exist an element whose [[Cyclic group#Definition and notation|order]] equals the exponent, {{math | ''λ''(''n'')}}. Such an element is called a '''primitive {{math | ''λ''}}-root modulo {{mvar | n}}'''. [[File:carmichaelLambda.svg|thumb|upright=2|Carmichael {{mvar | λ}} function: {{math | ''λ''(''n'')}} for {{math | 1 ≤ ''n'' ≤ 1000}} (compared to Euler {{mvar | φ}} function)]] The Carmichael function is named after the American mathematician [[Robert Daniel Carmichael|Robert Carmichael]] who defined it in 1910.<ref> {{cite journal |first1=Robert Daniel |last1=Carmichael |year=1910 |title=Note on a new number theory function |journal=Bulletin of the American Mathematical Society |volume=16 |number=5 |pages=232–238 |doi=10.1090/S0002-9904-1910-01892-9|doi-access=free }} </ref> It is also known as '''Carmichael's λ function''', the '''reduced totient function''', and the '''least universal exponent function'''. The order of the multiplicative group of integers modulo {{mvar | n}} is {{math | ''φ''(''n'')}}, where {{mvar | φ}} is [[Euler's totient function]]. Since the order of an element of a finite group divides the order of the group, {{math | ''λ''(''n'')}} divides {{math | ''φ''(''n'')}}. The following table compares the first 36 values of {{math | ''λ''(''n'')}} {{OEIS|id=A002322}} and {{math | ''φ''(''n'')}} (in '''bold''' if they are different; the values of{{mvar | n}} such that they are different are listed in {{oeis|A033949}}). {| class="wikitable" style="text-align: center;" |- ! scope="col" | {{mvar | n}} ! scope="col" | 1 ! scope="col" | 2 ! scope="col" | 3 ! scope="col" | 4 ! scope="col" | 5 ! scope="col" | 6 ! scope="col" | 7 ! scope="col" | 8 ! scope="col" | 9 ! scope="col" | 10 ! scope="col" | 11 ! scope="col" | 12 ! scope="col" | 13 ! scope="col" | 14 ! scope="col" | 15 ! scope="col" | 16 ! scope="col" | 17 ! scope="col" | 18 ! scope="col" | 19 ! scope="col" | 20 ! scope="col" | 21 ! scope="col" | 22 ! scope="col" | 23 ! scope="col" | 24 ! scope="col" | 25 ! scope="col" | 26 ! scope="col" | 27 ! scope="col" | 28 ! scope="col" | 29 ! scope="col" | 30 ! scope="col" | 31 ! scope="col" | 32 ! scope="col" | 33 ! scope="col" | 34 ! scope="col" | 35 ! scope="col" | 36 |- ! scope="row" | {{math | ''λ''(''n'')}} | 1 || 1 || 2 || 2 || 4 || 2 || 6 || '''2''' || 6 || 4 || 10 || '''2''' || 12 || 6 || '''4''' || '''4''' || 16 || 6 || 18 || '''4''' || '''6''' || 10 || 22 || '''2''' || 20 || 12 || 18 || '''6''' || 28 || '''4''' || 30 || '''8''' || '''10''' || 16 || '''12''' || '''6''' |- ! scope="row" | {{math | ''φ''(''n'')}} | 1 || 1 || 2 || 2 || 4 || 2 || 6 || '''4''' || 6 || 4 || 10 || '''4''' || 12 || 6 || '''8''' || '''8''' || 16 || 6 || 18 || '''8''' || '''12''' || 10 || 22 || '''8''' || 20 || 12 || 18 || '''12''' || 28 || '''8''' || 30 || '''16''' || '''20''' || 16 || '''24''' || '''12''' |} ==Numerical examples== * {{math | ''n'' {{=}} 5}}. The set of numbers less than and coprime to 5 is {{math | {1,2,3,4}}}. Hence Euler's totient function has value {{math | ''φ''(5) {{=}} 4}} and the value of Carmichael's function, {{math | ''λ''(5)}}, must be a divisor of 4. The divisor 1 does not satisfy the definition of Carmichael's function since <math>a^1 \not\equiv 1\pmod{5}</math> except for <math>a\equiv1\pmod{5}</math>. Neither does 2 since <math>2^2 \equiv 3^2 \equiv 4 \not\equiv 1\pmod{5}</math>. Hence {{math | ''λ''(5) {{=}} 4}}. Indeed, <math>1^4\equiv 2^4\equiv 3^4\equiv 4^4\equiv1\pmod{5}</math>. Both 2 and 3 are primitive {{mvar | λ}}-roots modulo 5 and also [[Primitive root modulo n|primitive roots]] modulo 5. * {{math | ''n'' {{=}} 8}}. The set of numbers less than and coprime to 8 is {{math | {1,3,5,7} }}. Hence {{math | ''φ''(8) {{=}} 4}} and {{math | ''λ''(8)}} must be a divisor of 4. In fact {{math | ''λ''(8) {{=}} 2}} since <math>1^2\equiv 3^2\equiv 5^2\equiv 7^2\equiv1\pmod{8}</math>. The primitive {{mvar | λ}}-roots modulo 8 are 3, 5, and 7. There are no primitive roots modulo 8. == Recurrence for {{math | ''λ''(''n'')}} == The Carmichael lambda function of a prime power can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case {{mvar | λ}} of the product is the [[least common multiple]] of the {{mvar | λ}} of the prime power factors. Specifically, {{math | ''λ''(''n'')}} is given by the recurrence :<math>\lambda(n) = \begin{cases} \varphi(n) & \text{if }n\text{ is 1, 2, 4, or an odd prime power,}\\ \tfrac12\varphi(n) & \text{if }n=2^r,\ r\ge3,\\ \operatorname{lcm}\Bigl(\lambda(n_1),\lambda(n_2),\ldots,\lambda(n_k)\Bigr) & \text{if }n=n_1n_2\ldots n_k\text{ where }n_1,n_2,\ldots,n_k\text{ are powers of distinct primes.} \end{cases}</math> Euler's totient for a prime power, that is, a number {{math | ''p''<sup>''r''</sup>}} with {{math | ''p''}} prime and {{math | ''r'' ≥ 1}}, is given by :<math>\varphi(p^r) {{=}} p^{r-1}(p-1).</math> == Carmichael's theorems == {{anchor|Carmichael's theorem}} Carmichael proved two theorems that, together, establish that if {{math | ''λ''(''n'')}} is considered as defined by the recurrence of the previous section, then it satisfies the property stated in the introduction, namely that it is the smallest positive integer {{mvar | m}} such that <math>a^m\equiv 1\pmod{n}</math> for all {{mvar | a}} relatively prime to {{mvar | n}}. {{Math theorem |name=Theorem 1|math_statement=If {{mvar | a}} is relatively prime to {{mvar | n}} then <math>a^{\lambda(n)}\equiv 1\pmod{n}</math>.<ref>Carmichael (1914) p.40</ref>}} This implies that the order of every element of the multiplicative group of integers modulo {{mvar | n}} divides {{math | ''λ''(''n'')}}. Carmichael calls an element {{mvar | a}} for which <math>a^{\lambda(n)}</math> is the least power of {{mvar | a}} congruent to 1 (mod {{mvar | n}}) a ''primitive λ-root modulo n''.<ref>Carmichael (1914) p.54</ref> (This is not to be confused with a [[primitive root modulo n|primitive root modulo {{mvar | n}}]], which Carmichael sometimes refers to as a primitive <math>\varphi</math>-root modulo {{mvar | n}}.) {{Math theorem |name=Theorem 2|math_statement=For every positive integer {{mvar | n}} there exists a primitive {{mvar | λ}}-root modulo {{mvar | n}}. Moreover, if {{mvar | g}} is such a root, then there are <math>\varphi(\lambda(n))</math> primitive {{mvar | λ}}-roots that are congruent to powers of {{mvar | g}}.<ref>Carmichael (1914) p.55</ref>}} If {{mvar | g}} is one of the primitive {{mvar | λ}}-roots guaranteed by the theorem, then <math>g^m\equiv1\pmod{n}</math> has no positive integer solutions {{mvar | m}} less than {{math | ''λ''(''n'')}}, showing that there is no positive {{math | ''m'' < ''λ''(''n'')}} such that <math>a^m\equiv 1\pmod{n}</math> for all {{mvar | a}} relatively prime to {{mvar | n}}. The second statement of Theorem 2 does not imply that all primitive {{mvar | λ}}-roots modulo {{mvar | n}} are congruent to powers of a single root {{mvar | g}}.<ref>Carmichael (1914) p.56</ref> For example, if {{math | ''n'' {{=}} 15}}, then {{math | ''λ''(''n'') {{=}} 4}} while <math>\varphi(n)=8</math> and <math>\varphi(\lambda(n))=2</math>. There are four primitive {{mvar | λ}}-roots modulo 15, namely 2, 7, 8, and 13 as <math>1\equiv2^4\equiv8^4\equiv7^4\equiv13^4</math>. The roots 2 and 8 are congruent to powers of each other and the roots 7 and 13 are congruent to powers of each other, but neither 7 nor 13 is congruent to a power of 2 or 8 and vice versa. The other four elements of the multiplicative group modulo 15, namely 1, 4 (which satisfies <math>4\equiv2^2\equiv8^2\equiv7^2\equiv13^2</math>), 11, and 14, are not primitive {{mvar | λ}}-roots modulo 15. For a contrasting example, if {{math | ''n'' {{=}} 9}}, then <math>\lambda(n)=\varphi(n)=6</math> and <math>\varphi(\lambda(n))=2</math>. There are two primitive {{mvar | λ}}-roots modulo 9, namely 2 and 5, each of which is congruent to the fifth power of the other. They are also both primitive <math>\varphi</math>-roots modulo 9. ==Properties of the Carmichael function== In this section, an [[integer]] <math>n</math> is divisible by a nonzero integer <math>m</math> if there exists an integer <math>k</math> such that <math>n = km</math>. This is written as :<math>m \mid n.</math> ===A consequence of minimality of {{math | ''λ''(''n'')}}=== Suppose {{math | ''a<sup>m</sup>'' ≡ 1 (mod ''n'')}} for all numbers {{mvar | a}} coprime with {{mvar | n}}. Then {{math | ''λ''(''n'') {{!}} ''m''}}. '''Proof:''' If {{math | ''m'' {{=}} ''kλ''(''n'') + ''r''}} with {{math | 0 ≤ ''r'' < ''λ''(''n'')}}, then :<math>a^r = 1^k \cdot a^r \equiv \left(a^{\lambda(n)}\right)^k\cdot a^r = a^{k\lambda(n)+r} = a^m \equiv 1\pmod{n}</math> for all numbers {{mvar | a}} coprime with {{mvar | n}}. It follows that {{math | 1=''r'' = 0}} since {{math | ''r'' < ''λ''(''n'')}} and {{math | ''λ''(''n'')}} is the minimal positive exponent for which the congruence holds for all {{mvar | a}} coprime with {{mvar | n}}. === {{math | ''λ''(''n'')}} divides {{math | ''φ''(''n'')}} === This follows from elementary [[group theory]], because the exponent of any [[finite group]] must divide the order of the group. {{math | ''λ''(''n'')}} is the exponent of the multiplicative group of integers modulo {{mvar | n}} while {{math | ''φ''(''n'')}} is the order of that group. In particular, the two must be equal in the cases where the multiplicative group is cyclic due to the existence of a [[primitive_root_modulo_n|primitive root]], which is the case for odd prime powers. We can thus view Carmichael's theorem as a sharpening of [[Euler's theorem]]. ===Divisibility=== :<math> a\,|\,b \Rightarrow \lambda(a)\,|\,\lambda(b) </math> '''Proof.''' By definition, for any integer <math>k</math> with <math>\gcd(k,b) = 1</math> (and thus also <math>\gcd(k,a) = 1</math>), we have that <math> b \,|\, (k^{\lambda(b)} - 1)</math> , and therefore <math> a \,|\, (k^{\lambda(b)} - 1)</math>. This establishes that <math>k^{\lambda(b)}\equiv1\pmod{a}</math> for all {{mvar | k}} relatively prime to {{mvar | a}}. By the consequence of minimality proved above, we have <math> \lambda(a)\,|\,\lambda(b) </math>. ===Composition=== For all positive integers {{mvar | a}} and {{mvar | b}} it holds that :<math>\lambda(\mathrm{lcm}(a,b)) = \mathrm{lcm}(\lambda(a), \lambda(b))</math>. This is an immediate consequence of the recurrence for the Carmichael function. <!-- Proof goes as follows: Write a and b as product of prime powers a = p1^x1·...·pt^xt b = p1^y1·...·pt^yt lambda(lcm(a,b)) = lambda(p1^max(x1,y1)·...·pt^max(xt,yt)) = lcm(lambda(p1^max(x1,y1)), ..., lambda(pt^max(xt,yt))) = lcm(lcm(lambda(p1^x1),lambda(p1^y1)), ..., lcm(lambda(pt^xt),lambda(pt^yt))) = lcm(lcm(lambda(p1^x1),...,lambda(pt^xt)), lcm(lambda(p1^y1),...,lambda(pt^yt))) = lcm(lambda(p1^x1·...·pt^xt), lambda(p1^y1·...·pt^yt)) = lcm(lambda(a), lambda(b)) --> ===Exponential cycle length=== If <math>r_{\mathrm{max}}=\max_i\{r_i\}</math> is the biggest exponent in the prime factorization <math> n= p_1^{r_1}p_2^{r_2} \cdots p_{k}^{r_k} </math> of {{mvar | n}}, then for all {{mvar | a}} (including those not coprime to {{mvar | n}}) and all {{math | ''r'' ≥ ''r''<sub>max</sub>}}, :<math>a^r \equiv a^{\lambda(n)+r} \pmod n.</math> In particular, for [[Square-free integer|square-free]] {{mvar | n}} ({{math | ''r''<sub>max</sub> {{=}} 1}}), for all {{mvar | a}} we have :<math>a \equiv a^{\lambda(n)+1} \pmod n.</math> ===Average value=== For any {{math | ''n'' ≥ 16}}:<ref>Theorem 3 in Erdős (1991)</ref><ref name=HBII194>Sándor & Crstici (2004) p.194</ref> :<math>\frac{1}{n} \sum_{i \leq n} \lambda (i) = \frac{n}{\ln n} e^{B (1+o(1)) \ln\ln n / (\ln\ln\ln n) }</math> (called Erdős approximation in the following) with the constant :<math>B := e^{-\gamma} \prod_{p\in\mathbb P} \left({1 - \frac{1}{(p-1)^2(p+1)}}\right) \approx 0.34537 </math> and {{math | ''γ'' ≈ 0.57721}}, the [[Euler–Mascheroni constant]]. The following table gives some overview over the first {{math | 1=2<sup>26</sup> – 1 = {{val|fmt=gaps|67108863}}}} values of the {{mvar | λ}} function, for both, the exact average and its Erdős-approximation. Additionally given is some overview over the more easily accessible {{nowrap|“logarithm over logarithm” values}} {{math | 1=LoL(''n'') := {{sfrac|ln ''λ''(''n'')|ln ''n''}}}} with * {{math | LoL(''n'') > {{sfrac|4|5}} ⇔ ''λ''(''n'') > ''n''<sup>{{sfrac|4|5}}</sup>}}. There, the table entry in row number 26 at column * {{math | % LoL > {{sfrac|4|5}}}} {{pad|1em}} → 60.49 indicates that 60.49% (≈ {{val|fmt=gaps|40000000}}) of the integers {{math | 1 ≤ ''n'' ≤ {{val|fmt=gaps|67108863}}}} have {{math | ''λ''(''n'') > ''n''<sup>{{sfrac|4|5}}</sup>}} meaning that the majority of the {{mvar | λ}} values is exponential in the length {{math | ''l'' :{{=}} log<sub>2</sub>(''n'')}} of the input {{mvar | n}}, namely :<math>\left(2^\frac45\right)^l = 2^\frac{4l}{5} = \left(2^l\right)^\frac45 = n^\frac45.</math> :{| class="wikitable" style="text-align:right" |- style="vertical-align:top" ! {{mvar | ν}} || {{math | 1=''n'' = 2<sup>''ν''</sup> – 1}} || sum<br /><math>\sum_{i\le n} \lambda(i) </math> || average<br /><math>\tfrac1n \sum_{i\le n} \lambda(i) </math> || Erdős average || Erdős /<br>exact average || {{math | LoL}} average || % {{math | LoL}} > {{sfrac|4|5}} || % {{math | LoL}} > {{sfrac|7|8}} |- |5||31||270||8.709677||68.643||7.8813||0.678244||41.94 ||35.48 |- |6||63||964||15.301587||61.414||4.0136||0.699891||38.10 ||30.16 |- |7||127||3574||28.141732||86.605||3.0774||0.717291||38.58 ||27.56 |- |8||255||12994||50.956863||138.190||2.7119||0.730331||38.82 ||23.53 |- |9||511||48032||93.996086||233.149||2.4804||0.740498||40.90 ||25.05 |- |10||1023||178816||174.795699||406.145||2.3235||0.748482||41.45 ||26.98 |- |11||2047||662952||323.865169||722.526||2.2309||0.754886||42.84 ||27.70 |- |12||4095||2490948||608.290110||1304.810||2.1450||0.761027||43.74 ||28.11 |- |13||8191||9382764||1145.496765||2383.263||2.0806||0.766571||44.33 ||28.60 |- |14||16383||35504586||2167.160227||4392.129||2.0267||0.771695||46.10 ||29.52 |- |15||32767||134736824||4111.967040||8153.054||1.9828||0.776437||47.21 ||29.15 |- |16||65535||513758796||7839.456718||15225.43{{0}}||1.9422||0.781064||49.13 ||28.17 |- |17||131071||1964413592||14987.40066{{0}}||28576.97{{0}}||1.9067||0.785401||50.43 ||29.55 |- |18||262143||7529218208||28721.79768{{0}}||53869.76{{0}}||1.8756||0.789561||51.17 ||30.67 |- |19||524287||28935644342||55190.46694{{0}}||101930.9{{0|00}}||1.8469||0.793536||52.62 ||31.45 |- |20||1048575||111393101150||106232.8409{{0|00}}||193507.1{{0|00}}||1.8215||0.797351||53.74 ||31.83 |- |21||2097151||429685077652||204889.9090{{0|00}}||368427.6{{0|00}}||1.7982||0.801018||54.97 ||32.18 |- |22||4194303||1660388309120||395867.5158{{0|00}}||703289.4{{0|00}}||1.7766||0.804543||56.24 ||33.65 |- |23||8388607||6425917227352||766029.1187{{0|00}}||1345633{{0|.000}}||1.7566||0.807936||57.19 ||34.32 |- |24||16777215||24906872655990||1484565.386{{0|000}}||2580070{{0|.000}}||1.7379||0.811204||58.49 ||34.43 |- |25||33554431||96666595865430||2880889.140{{0|000}}||4956372{{0|.000}}||1.7204||0.814351||59.52 ||35.76 |- |26||67108863||375619048086576||5597160.066{{0|000}}||9537863{{0|.000}}||1.7041||0.817384||60.49 ||36.73 |} ===Prevailing interval=== For all numbers {{mvar | N}} and all but {{math | ''o''(''N'')}}<ref>Theorem 2 in Erdős (1991) 3. Normal order. (p.365)</ref> positive integers {{math | ''n'' ≤ ''N''}} (a "prevailing" majority): :<math>\lambda(n) = \frac{n} {(\ln n)^{\ln\ln\ln n + A + o(1)}}</math> with the constant<ref name=HBII194/> :<math>A := -1 + \sum_{p\in\mathbb P} \frac{\ln p}{(p-1)^2} \approx 0.2269688 </math> ===Lower bounds=== For any sufficiently large number {{mvar | N}} and for any {{math | Δ ≥ (ln ln ''N'')<sup>3</sup>}}, there are at most :<math>N\exp\left(-0.69(\Delta\ln\Delta)^\frac13\right)</math> positive integers {{math | ''n'' ≤ N}} such that {{math | ''λ''(''n'') ≤ ''ne''<sup>−Δ</sup>}}.<ref>Theorem 5 in Friedlander (2001)</ref> ===Minimal order=== For any sequence {{math | ''n''<sub>1</sub> < ''n''<sub>2</sub> < ''n''<sub>3</sub> < ⋯}} of positive integers, any constant {{math | 0 < ''c'' < {{sfrac|1|ln 2}}}}, and any sufficiently large {{mvar | i}}:<ref name="Theorem 1 in Erdős (1991)">Theorem 1 in Erdős (1991)</ref><ref name=HBII193>Sándor & Crstici (2004) p.193</ref> :<math>\lambda(n_i) > \left(\ln n_i\right)^{c\ln\ln\ln n_i}.</math> ===Small values=== For a constant {{mvar | c}} and any sufficiently large positive {{mvar | A}}, there exists an integer {{math | ''n'' > ''A''}} such that<ref name=HBII193/> :<math>\lambda(n)<\left(\ln A\right)^{c\ln\ln\ln A}.</math> Moreover, {{mvar | n}} is of the form :<math>n=\mathop{\prod_{q \in \mathbb P}}_{(q-1)|m}q</math> for some square-free integer {{math | ''m'' < (ln ''A'')<sup>''c'' ln ln ln ''A''</sup>}}.<ref name="Theorem 1 in Erdős (1991)"/> ===Image of the function=== The set of values of the Carmichael function has counting function<ref>{{cite journal | arxiv=1408.6506 | title=The image of Carmichael's ''λ''-function | first1=Kevin | last1=Ford | first2=Florian | last2=Luca | first3=Carl | last3=Pomerance | date=27 August 2014 | doi=10.2140/ant.2014.8.2009 | volume=8 | issue=8 | journal=Algebra & Number Theory | pages=2009–2026| s2cid=50397623 }}</ref> :<math>\frac{x}{(\ln x)^{\eta+o(1)}} ,</math> where :<math>\eta=1-\frac{1+\ln\ln2}{\ln2} \approx 0.08607</math> ==Use in cryptography== The Carmichael function is important in [[cryptography]] due to its use in the [[RSA (cryptosystem)|RSA encryption algorithm]]. ==Proof of Theorem 1== For {{math | ''n'' {{=}} ''p''}}, a prime, Theorem 1 is equivalent to Fermat's little theorem: :<math>a^{p-1}\equiv1\pmod{p}\qquad\text{for all }a\text{ coprime to }p.</math> For prime powers {{math | ''p''<sup>''r''</sup>}}, {{math | ''r'' > 1}}, if :<math>a^{p^{r-1}(p-1)}=1+hp^r</math> holds for some integer {{mvar | h}}, then raising both sides to the power {{mvar | p}} gives :<math>a^{p^r(p-1)}=1+h'p^{r+1}</math> for some other integer <math>h'</math>. By induction it follows that <math>a^{\varphi(p^r)}\equiv1\pmod{p^r}</math> for all {{mvar | a}} relatively prime to {{mvar | p}} and hence to {{math | ''p''<sup>''r''</sup>}}. This establishes the theorem for {{math | ''n'' {{=}} 4}} or any odd prime power. ===Sharpening the result for higher powers of two=== For {{mvar | a}} coprime to (powers of) 2 we have {{math | ''a'' {{=}} 1 + 2''h''<sub>2</sub>}} for some integer {{math | ''h''<sub>2</sub>}}. Then, :<math>a^2 = 1+4h_2(h_2+1) = 1+8\binom{h_2+1}{2}=:1+8h_3</math>, where <math>h_3</math> is an integer. With {{math | 1=''r'' = 3}}, this is written :<math>a^{2^{r-2}} = 1+2^r h_r.</math> Squaring both sides gives :<math>a^{2^{r-1}}=\left(1+2^r h_r\right)^2=1+2^{r+1}\left(h_r+2^{r-1}h_r^2\right)=:1+2^{r+1}h_{r+1},</math> where <math>h_{r+1}</math> is an integer. It follows by induction that :<math>a^{2^{r-2}}=a^{\frac{1}{2}\varphi(2^r)}\equiv 1\pmod{2^r}</math> for all <math>r\ge3</math> and all {{mvar | a}} coprime to <math>2^r</math>.<ref>Carmichael (1914) pp.38–39</ref> ===Integers with multiple prime factors=== By the [[unique factorization theorem]], any {{math | ''n'' > 1}} can be written in a unique way as :<math> n= p_1^{r_1}p_2^{r_2} \cdots p_{k}^{r_k} </math> where {{math | ''p''<sub>1</sub> < ''p''<sub>2</sub> < ... < ''p<sub>k</sub>''}} are primes and {{math | ''r''<sub>1</sub>, ''r''<sub>2</sub>, ..., ''r<sub>k</sub>''}} are positive integers. The results for prime powers establish that, for <math>1\le j\le k</math>, :<math>a^{\lambda\left(p_j^{r_j}\right)}\equiv1 \pmod{p_j^{r_j}}\qquad\text{for all }a\text{ coprime to }n\text{ and hence to }p_i^{r_i}.</math> From this it follows that :<math>a^{\lambda(n)}\equiv1 \pmod{p_j^{r_j}}\qquad\text{for all }a\text{ coprime to }n,</math> where, as given by the recurrence, :<math>\lambda(n) = \operatorname{lcm}\Bigl(\lambda\left(p_1^{r_1}\right),\lambda\left(p_2^{r_2}\right),\ldots,\lambda\left(p_k^{r_k}\right)\Bigr).</math> From the [[Chinese remainder theorem]] one concludes that :<math>a^{\lambda(n)}\equiv1 \pmod{n}\qquad\text{for all }a\text{ coprime to }n.</math> ==See also== * [[Carmichael number]] ==Notes== <references/> ==References== * {{cite journal |first1=Paul |last1= Erdős |author1-link=Paul Erdős |first2=Carl |last2=Pomerance |author2-link=Carl Pomerance |first3=Eric |last3=Schmutz |year=1991 |title=Carmichael's lambda function |journal=Acta Arithmetica |volume=58 |issue= 4 |pages=363–385 |mr=1121092 | zbl=0734.11047 | issn=0065-1036 |doi=10.4064/aa-58-4-363-385|doi-access=free }} * {{cite journal |first1=John B. |last1=Friedlander |author1-link=John Friedlander |first2=Carl |last2=Pomerance |first3=Igor E. |last3=Shparlinski |year=2001 |title=Period of the power generator and small values of the Carmichael function |journal=Mathematics of Computation |volume=70 |number=236 |pages=1591–1605, 1803–1806 |mr=1836921 | zbl=1029.11043 | issn=0025-5718 |doi=10.1090/s0025-5718-00-01282-5|doi-access=free }} * {{cite book | last1=Sándor | first1=Jozsef | last2=Crstici | first2=Borislav | title=Handbook of number theory II | location=Dordrecht | publisher=Kluwer Academic | year=2004 | isbn=978-1-4020-2546-4 | pages=32–36, 193–195 | zbl=1079.11001}} * {{Gutenberg|no=13693|name=The Theory of Numbers|last=Carmichael|first=Robert D.|origyear=1914}} {{Totient}} [[Category:Modular arithmetic]] [[Category:Functions and mappings]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:0
(
edit
)
Template:Anchor
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Gutenberg
(
edit
)
Template:Math
(
edit
)
Template:Math theorem
(
edit
)
Template:Mvar
(
edit
)
Template:Nowrap
(
edit
)
Template:OEIS
(
edit
)
Template:Oeis
(
edit
)
Template:Pad
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)
Template:Totient
(
edit
)
Template:Val
(
edit
)