Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Enigma rotor details
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Technical details about the Enigma machine}} {{Multiple issues| {{More footnotes|date=December 2014}} {{Cleanup rewrite|date=January 2022}} }} {{EnigmaSeries}} This article contains technical details about the rotors of the [[Enigma machine]]. Understanding the way the machine encrypts requires taking into account the current position of each rotor, the ring setting and its internal wiring. ==Physical design of rotors== [[File:Enigma rotor wiring.png|upright=1.4|thumb|center|Detail of rotor internal structure and wiring on display at the [[National Cryptologic Museum|US National Cryptologic Museum]]]] {{clear|left}} {| class="toccolours" style="background:white; margin:1em auto; clear:both; font-size:94%;" ! style="background:#ddddff; padding:.3em" colspan="2" | Exploded view of an Enigma rotor | rowspan="2" | ! style="background:#ddddff; padding:.3em" | Three rotors in sequence |- | [[Image:Enigma rotor exploded view.png|220px]] | # notched ring # marking dot for "A" contact # alphabet tyre # plate contacts # wire connections # pin contacts # spring-loaded ring adjusting lever # hub # finger wheel # ratchet wheel | [[Image:Enigma rotor set.png|240px]] |} {{clear|left}} <gallery mode="packed" heights="320px"> Image:Enigma-rotor-pin-contacts.jpg|The right side of a rotor, showing the pin electrical contacts. The Roman numeral V identifies the wiring of the rotor. Image:Enigma-rotor-flat-contacts.jpg|The left side of an Enigma rotor, showing the flat (plate) electrical contacts. A single turnover notch is visible on the left edge of the rotor. </gallery> ==Rotor electrical view== [[Image:Enigma-action.svg|thumb|right|400px|The scrambling action of the Enigma rotors shown for two consecutive letters — current is passed through the rotors, around the reflector, and back out through the rotors again. ''Note: The grayed-out lines represent other possible circuits within each rotor, which are hard-wired to contacts on each rotor.'']] No letter can map to itself, a cryptographic weakness caused by the same wires being used for forwards and backwards legs. {{clear}} ==Rotor offset== The effect of rotation on the rotors can be demonstrated with some examples. As an example, let us take rotor type I of Enigma I (see table below) without any ring setting offset. It can be seen that an {{samp|1=A}} is encoded as an {{samp|1=E}}, a {{samp|1=B}} encoded as a {{samp|1=K}}, and a {{samp|1=K}} is encoded as an {{samp|1=N}}. Notice that every letter is encoded into another. In the case of the reflectors, in this example Wide {{mono|B}} is taken (Reflector B in the table below) where an {{mono|A}} is returned as a {{mono|Y}} and the {{mono|Y}} is returned as an {{mono|A}}. Notice that the wirings are connected as a loop between two letters. When a rotor has stepped, the offset must be taken into account to know what the output is, and where it enters the next rotor. If for example rotor I is in the {{mono|B}}-position, an {{mono|A}} enters at the letter {{mono|B}} which is wired to the {{mono|K}}. Because of the offset this {{mono|K}} enters the next rotor in the {{mono|J}} position. With the rotors I, II and III (from left to right), wide {{mono|B-reflector}}, all ring settings in {{mono|A-position}}, and start position {{mono|AAA}}, typing {{mono|AAAAA}} will produce the encoded sequence {{mono|BDZGO}}{{citation needed|date=August 2021}}. ==Ring setting== The ring settings, or ''Ringstellung'', are used to change the position of the alphabet ring relative to the internal wiring. Notch and alphabet ring are fixed together. Changing the ring setting will therefore change the positions of the wiring, relative to the turnover-point and start position. The ring setting will rotate the wiring. Where rotor I in the {{mono|A}}-position normally encodes an {{mono|A}} into an {{mono|E}}, with a ring setting offset {{mono|B}}-02 it will be encoded into {{mono|K}} As mentioned before these encodings only happen after the key is pressed and the rotor has turned. Tracing the signal on the rotors {{mono|AAA}} is therefore only possible if a key is pressed while the rotors were in the position {{mono|AAZ}} and the ring settings are all on {{mono|01}} or {{mono|A}}. With the rotors I, II, III (from left to right), wide {{mono|B-reflector}}, all ring settings in {{mono|B-position}}, and start position {{mono|AAA}}, typing {{mono|AAAAA}} will produce the encoded sequence {{mono|EWTYX}}. ==Rotor wiring tables== This table shows how the internal wiring connects the right side of the rotor (with the spring-loaded contacts) to the left side. Each rotor is a simple substitution cipher. The letters are listed as connected to alphabet order. If the first letter of a rotor is {{mono|E}}, this means that the {{mono|A}} is wired to the {{mono|E}}. This does not mean that {{mono|E}} is wired to {{mono|A}}; such looped wiring is only the case with the reflectors. ;Terminology *''The reflector is also known as the reversing drum or, from the German, the Umkehrwalze or UKW.'' {| class="wikitable" |+ '''Rotor Wiring'''<ref>{{Cite web |title=Enigma wiring |url=https://www.cryptomuseum.com/crypto/enigma/wiring.htm |access-date=2022-06-09 |website=www.cryptomuseum.com}}</ref> |- ! Rotor # ! {{mono|ABCDEFGHIJKLMNOPQRSTUVWXYZ}} ! Date Introduced ! Model Name & Number |- | I''C'' | {{mono|DMTWSILRUYQNKFEJCAZBPGXOHV}} | 1924 | [[Enigma machine#Commercial Enigma|Commercial Enigma]] A, B |- | II''C'' | {{mono|HQZGPJTMOBLNCIFDYAWVEUSRKX}} | 1924 | Commercial Enigma A, B |- | III''C'' | {{mono|UQNTLSZFMREHDPXKIBVYGJCWOA}} | 1924 | Commercial Enigma A, B |- | | | |- ! Rotor # ! {{mono|ABCDEFGHIJKLMNOPQRSTUVWXYZ}} ! Date Introduced ! Model Name & Number |- | I | {{mono|JGDQOXUSCAMIFRVTPNEWKBLZYH}} | 7 February 1941 | German Railway (Rocket) |- | II | {{mono|NTZPSFBOKMWRCJDIVLAEYUXHGQ}} | 7 February 1941 | German Railway (Rocket) |- | III | {{mono|JVIUBHTCDYAKEQZPOSGXNRMWFL}} | 7 February 1941 | German Railway (Rocket) |- | UKW | {{mono|QYHOGNECVPUZTFDJAXWMKISRBL}} | 7 February 1941 | German Railway (Rocket) |- | ETW | {{mono|QWERTZUIOASDFGHJKPYXCVBNML}} | 7 February 1941 | German Railway (Rocket) |- | | | | |- ! Rotor # ! {{mono|ABCDEFGHIJKLMNOPQRSTUVWXYZ}} ! Date Introduced ! Model Name & Number |- | I-''K'' | {{mono|PEZUOHXSCVFMTBGLRINQJWAYDK}} | February 1939 | Swiss K |- | II-''K'' | {{mono|ZOUESYDKFWPCIQXHMVBLGNJRAT}} | February 1939 | Swiss K |- | III-''K'' | {{mono|EHRVXGAOBQUSIMZFLYNWKTPDJC}} | February 1939 | Swiss K |- | UKW-''K'' | {{mono|IMETCGFRAYSQBZXWLHKDVUPOJN}} | February 1939 | Swiss K |- | ETW-''K'' | {{mono|QWERTZUIOASDFGHJKPYXCVBNML}} | February 1939 | Swiss K |- | | | | |- ! Rotor # ! {{mono|ABCDEFGHIJKLMNOPQRSTUVWXYZ}} ! Date Introduced ! Model Name & Number |- | I | {{mono|EKMFLGDQVZNTOWYHXUSPAIBRCJ}} | 1930 | [[Enigma I]] |- | II | {{mono|AJDKSIRUXBLHWTMCQGZNPYFVOE}} | 1930 | Enigma I |- | III | {{mono|BDFHJLCPRTXVZNYEIWGAKMUSQO}} | 1930 | Enigma I |- | IV | {{mono|ESOVPZJAYQUIRHXLNFTGKDCMWB}} | December 1938 | M3 Army |- | V | {{mono|VZBRGITYUPSDNHLXAWMJQOFECK}} | December 1938 | M3 Army |- | VI | {{mono|JPGVOUMFYQBENHZRDKASXLICTW}} | 1939 | M3 & M4 Naval (FEB 1942) |- | VII | {{mono|NZJHGRCXMYSWBOUFAIVLPEKQDT}} | 1939 | M3 & M4 Naval (FEB 1942) |- | VIII | {{mono|FKQHTLXOCBJSPDZRAMEWNIUYGV}} | 1939 | M3 & M4 Naval (FEB 1942) |- | | | | |- ! Rotor # ! {{mono|ABCDEFGHIJKLMNOPQRSTUVWXYZ}} ! Date Introduced ! Model Name & Number |- | Beta | {{mono|LEYJVCNIXWPBQMDRTAKZGFUHOS}} | Spring 1941 | M4 R2 |- | Gamma | {{mono|FSOKANUERHMBTIYCWLQPZXVGJD}} | Spring 1942 | M4 R2 |- | Reflector A | {{mono|EJMZALYXVBWFCRQUONTSPIKHGD}} | | |- | Reflector B | {{mono|YRUHQSLDPXNGOKMIEBFZCWVJAT}} | | |- | Reflector C | {{mono|FVPJIAOYEDRZXWGCTKUQSBNMHL}} | | |- | Reflector B Thin | {{mono|ENKQAUYWJICOPBLMDXZVFTHRGS}} | 1940 | M4 R1 (M3 + Thin) |- | Reflector C Thin | {{mono|RDOBJNTKVEHMLFCWZAXGYIPSUQ}} | 1940 | M4 R1 (M3 + Thin) |- | ETW | {{mono|ABCDEFGHIJKLMNOPQRSTUVWXYZ}} | | Enigma I |- |} Technical comments related to Enigma modifications 1939-1945. === Swiss K === In 1941 it became known to the Swiss that some of their Enigma traffic was being read by the French. It was decided to make some design modifications. * One of the modifications consisted in modifying the wheel stepping on the Swiss Army machine. The slow, left-hand wheel was made stationary during operation while the second wheel stepped with every key stroke. * The third wheel and the UKW would step in the normal fashion with Enigma stepping for the third wheel. * The stationary but rotatable left-hand wheel was meant to make up for the missing stecker connections on the commercial machine. Swiss Army Enigma machines were the only machines modified. The surviving Swiss Air Force machines do not show any signs of modification. Machines used by the diplomatic service apparently were not altered either. == Turnover notch positions == The single turnover notch positioned on the left side (plate connector side) of the rotor triggers the stepping motion by engaging the [[ratchet teeth]] of the wheel to the left. Later rotors had two turnover notches. The table below lists the turnover notch point of each rotor. {| class="wikitable" ! Rotor ! Notch ! Effect |- | I | Q | If rotor steps from Q to R, the next rotor is advanced |- | II | E | If rotor steps from E to F, the next rotor is advanced |- | III | V | If rotor steps from V to W, the next rotor is advanced |- | IV | J | If rotor steps from J to K, the next rotor is advanced |- | V | Z | If rotor steps from Z to A, the next rotor is advanced |- | VI, VII, VIII | Z+M | If rotor steps from Z to A, or from M to N the next rotor is advanced |- |} === Normalized Enigma sequences === In the following examples you can observe a normal step sequence and a double step sequence. The used rotors are (from left to right) I, II, III, with turnovers on {{mono|Q}}, {{mono|E}} and {{mono|V}}. It is the right rotor's behavior we observe here (turnover {{mono|V}}). :''Normal sequence:'' * {{mono|AAU}} — normal step of right rotor * {{mono|AAV}} — right rotor (III) goes in V—notch position * {{mono|ABW}} — right rotor takes middle rotor one step further * {{mono|ABX}} — normal step of right rotor :''Double step sequence:'' * {{mono|ADU}} — normal step of right rotor * {{mono|ADV}} — right rotor (III) goes in V—notch position * {{mono|AEW}} — right rotor steps, takes middle rotor (II) one step further, which is now in its own E—notch position * {{mono|BFX}} — normal step of right rotor, double step of middle rotor, normal step of left rotor * {{mono|BFY}} — normal step of right rotor ==Fourth rotor== {{See also|M4 (German Navy 4-rotor Enigma)}} [[Image:Bletchley Park Naval Enigma IMG 3604.JPG|thumb|The German Navy 4-rotor [[Enigma machine]] (M4) which was introduced for U-boat traffic on 1 February 1942.]] The introduction of the fourth rotor was anticipated because captured material dated January 1941 had made reference to the development of a fourth rotor wheel;<ref name="Mahon62">{{Harvnb|Mahon|1945|p=62}}</ref> indeed, the wiring of the new fourth rotor had already been worked out. On 1 February 1942, the Enigma messages began to be encoded using a new Enigma version that had been brought into use. The previous [[3-rotor Enigma]] model had been modified with the old reflector replaced by a thin rotor and a new thin reflector. Breaking Shark on 3-rotor bombes would have taken 50 to 100 times as long as an average Air Force or Army message. It seemed, therefore, that effective, fast, 4-rotor bombes were the only way forward. Encoding mistakes by cipher clerks allowed the British to determine the wiring of the new reflector and its rotor.<ref name="Mahon62"/> ==References== {{Reflist}} * {{citation |first=A. P. |last=Mahon |title=The History of Hut 8 1939–1945 |date=1945 |publisher=National Archives |location=Kew, Richmond, Surrey, TW9 4DU |id=Reference HW 25/2 |url=http://www.ellsbury.com/hut8/hut8-000.htm}} ==External links== *{{usurped|1=[https://web.archive.org/web/20160304130110/http://www.intelligenia.org/downloads/enigvar2.pdf enigvar2.pdf]}} *[http://www.ellsbury.com/enigmabombe.htm enigmabombe.htm] *[http://www.ellsbury.com/ultraenigmawirings.htm ultraenigmawirings.htm] *{{usurped|1=[https://web.archive.org/web/20120702000003/http://cryptocellar.web.cern.ch/cryptocellar/BPAbwehr/g-312.zip g-312.zip]}} [[Category:Enigma machine]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite web
(
edit
)
Template:Clear
(
edit
)
Template:EnigmaSeries
(
edit
)
Template:Harvnb
(
edit
)
Template:Mono
(
edit
)
Template:Multiple issues
(
edit
)
Template:Reflist
(
edit
)
Template:Samp
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Usurped
(
edit
)