Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
First fundamental form
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Inner product of a surface in 3D, induced by the dot product}} In [[differential geometry]], the '''first fundamental form''' is the [[inner product]] on the [[tangent space]] of a [[surface (differential geometry)|surface]] in three-dimensional [[Euclidean space]] which is induced [[canonical form|canonically]] from the [[dot product]] of {{math|'''R'''<sup>3</sup>}}. It permits the calculation of [[curvature]] and metric properties of a surface such as length and area in a manner consistent with the [[ambient space]]. The first fundamental form is denoted by the Roman numeral {{math|I}}, <math display="block">\mathrm{I}(x,y)= \langle x,y \rangle.</math> == Definition == Let {{math|''X''(''u'', ''v'')}} be a [[parametric surface]]. Then the inner product of two [[tangent vector]]s is <math display="block"> \begin{align} & \mathrm{I}(aX_u+bX_v,cX_u+dX_v) \\[5pt] = {} & ac \langle X_u,X_u \rangle + (ad+bc) \langle X_u,X_v \rangle + bd \langle X_v,X_v \rangle \\[5pt] = {} & Eac + F(ad+bc) + Gbd, \end{align} </math> where {{mvar|E}}, {{mvar|F}}, and {{mvar|G}} are the '''coefficients of the first fundamental form'''. The first fundamental form may be represented as a [[symmetric matrix]]. <math display="block">\mathrm{I}(x,y) = x^\mathsf{T} \begin{bmatrix} E & F \\ F & G \end{bmatrix}y </math> ==Further notation== When the first fundamental form is written with only one argument, it denotes the inner product of that vector with itself. <math display="block">\mathrm{I}(v)= \langle v,v \rangle = |v|^2</math> The first fundamental form is often written in the modern notation of the [[metric tensor]]. The coefficients may then be written as {{mvar|g<sub>ij</sub>}}: <math display="block"> \left(g_{ij}\right) = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} =\begin{pmatrix} E & F \\ F & G \end{pmatrix}</math> The components of this tensor are calculated as the scalar product of tangent vectors {{math|''X''<sub>1</sub>}} and {{math|''X''<sub>2</sub>}}: <math display="block">g_{ij} = \langle X_i, X_j \rangle </math> for {{math|1=''i'', ''j'' = 1, 2}}. See example below. ==Calculating lengths and areas== The first fundamental form completely describes the metric properties of a surface. Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The [[line element]] {{math|''ds''}} may be expressed in terms of the coefficients of the first fundamental form as <math display="block">ds^2 = E\,du^2+2F\,du\,dv+G\,dv^2 \,.</math> The classical area element given by {{math|1=''dA'' = {{abs|''X<sub>u</sub>'' Γ ''X<sub>v</sub>''}} ''du'' ''dv''}} can be expressed in terms of the first fundamental form with the assistance of [[Lagrange's identity]], <math display="block">dA = |X_u \times X_v| \ du\, dv= \sqrt{ \langle X_u,X_u \rangle \langle X_v,X_v \rangle - \left\langle X_u,X_v \right\rangle^2 } \, du\, dv = \sqrt{EG-F^2} \, du\, dv.</math> ===Example: curve on a sphere=== A [[spherical curve]] on the [[unit sphere]] in {{math|'''R'''<sup>3</sup>}} may be parametrized as <math display="block">X(u,v) = \begin{bmatrix} \cos u \sin v \\ \sin u \sin v \\ \cos v \end{bmatrix},\ (u,v) \in [0,2\pi) \times [0,\pi].</math> Differentiating {{math|''X''(''u'',''v'')}} with respect to {{mvar|u}} and {{mvar|v}} yields <math display="block">\begin{align} X_u &= \begin{bmatrix} -\sin u \sin v \\ \cos u \sin v \\ 0 \end{bmatrix},\\[5pt] X_v &= \begin{bmatrix} \cos u \cos v \\ \sin u \cos v \\ -\sin v \end{bmatrix}. \end{align}</math> The coefficients of the first fundamental form may be found by taking the dot product of the [[partial derivatives]]. <math display="block">\begin{align} E &= X_u \cdot X_u = \sin^2 v \\ F &= X_u \cdot X_v = 0 \\ G &= X_v \cdot X_v = 1 \end{align}</math> so: <math display="block"> \begin{bmatrix}E & F \\F & G\end{bmatrix} =\begin{bmatrix} \sin^2 v & 0 \\0 & 1\end{bmatrix}.</math> ====Length of a curve on the sphere==== The [[equator]] of the unit sphere is a parametrized curve given by <math display="block">(u(t),v(t))=(t,\tfrac{\pi}{2})</math> with {{mvar|t}} ranging from 0 to 2{{pi}}. The line element may be used to calculate the length of this curve. <math display="block">\int_0^{2\pi} \sqrt{ E\left(\frac{du}{dt}\right)^2 + 2F \frac{du}{dt} \frac{dv}{dt} + G\left(\frac{dv}{dt}\right)^2 } \,dt = \int_0^{2\pi} \left|\sin v\right| \, dt = 2\pi \sin \tfrac{\pi}{2} = 2\pi</math> ====Area of a region on the sphere==== The area element may be used to calculate the area of the unit sphere. <math display="block">\int_0^\pi \int_0^{2\pi} \sqrt{ EG-F^2 } \ du\, dv = \int_0^\pi \int_0^{2\pi} \sin v \, du\, dv = 2\pi \Big[ {-\cos v} \Big]_0^{\pi} = 4\pi</math> ==Gaussian curvature== The [[Gaussian curvature]] of a surface is given by <math display="block"> K = \frac{\det \mathrm{I\!I}_p}{\det \mathrm{I}_p} = \frac{ LN-M^2}{EG-F^2 }, </math> where {{mvar|L}}, {{mvar|M}}, and {{mvar|N}} are the coefficients of the [[second fundamental form]]. [[Theorema egregium]] of [[Carl Friedrich Gauss|Gauss]] states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that {{mvar|K}} is in fact an intrinsic invariant of the surface. An explicit expression for the Gaussian curvature in terms of the first fundamental form is provided by the [[Gaussian curvature#Alternative_formulas|Brioschi formula]]. ==See also== *[[Metric tensor]] *[[Second fundamental form]] *[[Third fundamental form]] *[[Tautological one-form]] *[[Gram matrix]] ==External links== *[http://mathworld.wolfram.com/FirstFundamentalForm.html First Fundamental Form β from Wolfram MathWorld] <!-- *[http://planetmath.org/encyclopedia/FirstFundamentalForm.html PlanetMath: first fundamental form] --> {{curvature}} [[Category:Differential geometry of surfaces]] [[Category:Differential geometry]] [[Category:Surfaces]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Curvature
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Pi
(
edit
)
Template:Short description
(
edit
)