Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal number (computing)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{for|the mathematical meaning|normal number}} {{refimprove|date=December 2009}} {{Floating-point}} In [[computing]], a '''normal number''' is a non-zero number in a [[floating point|floating-point representation]] which is within the balanced range supported by a given floating-point format: it is a floating point number that can be represented without leading zeros in its [[significand]]. The magnitude of the '''smallest normal number''' in a format is given by: <math display="block">b^{E_{\text{min}}}</math> where ''b'' is the base (radix) of the format (like common values 2 or 10, for binary and decimal number systems), and ''<math display="inline">E_{\text{min}}</math>'' depends on the size and layout of the format. Similarly, the magnitude of the '''largest normal number''' in a format is given by :<math display="block">b^{E_{\text{max}}}\cdot\left(b - b^{1-p}\right)</math> where ''p'' is the precision of the format in [[numerical digit|digit]]s and ''<math display="inline">E_{\text{min}}</math>'' is related to ''<math display="inline">E_{\text{max}}</math>'' as: <math display="block">E_{\text{min}}\, \overset{\Delta}{\equiv}\, 1 - E_{\text{max}} = \left(-E_{\text{max}}\right) + 1</math> In the [[IEEE 754]] binary and decimal formats, ''b'', ''p'', <math display="inline">E_{\text{min}}</math>, and ''<math display="inline">E_{\text{max}}</math>'' have the following values:<ref>{{Citation | title = IEEE Standard for Floating-Point Arithmetic | date = 2008-08-29 | url = https://ieeexplore.ieee.org/document/4610935 | doi =10.1109/IEEESTD.2008.4610935 | access-date = 2015-04-26| isbn = 978-0-7381-5752-8 | url-access = subscription }}</ref> {| class="wikitable" style="text-align: right;" | |+Smallest and Largest Normal Numbers for common numerical Formats !Format!!<math>b</math>!!<math>p</math>!!<math>E_{\text{min}}</math>!!<math>E_{\text{max}}</math> !Smallest Normal Number !Largest Normal Number |- |[[Half-precision floating-point format|binary16]]||2||11||β14||15 |<math>2^{-14} \equiv 0.00006103515625</math> |<math>2^{15}\cdot\left(2 - 2^{1-11}\right) \equiv 65504</math> |- |[[Single-precision floating-point format|binary32]]||2||24||β126||127 |<math>2^{-126} \equiv \frac{1}{2^{126}}</math> |<math>2^{127}\cdot\left(2 - 2^{1-24}\right)</math> |- |[[Double-precision floating-point format|binary64]]||2||53||β1022||1023 |<math>2^{-1022} \equiv \frac{1}{2^{1022}}</math> |<math>2^{1023}\cdot\left(2 - 2^{1-53}\right)</math> |- |binary128||2||113||β16382||16383 |<math>2^{-16382} \equiv \frac{1}{2^{16382}}</math> |<math>2^{16383}\cdot\left(2 - 2^{1-113}\right)</math> |- |decimal32||10||7||β95||96 |<math>10^{-95} \equiv \frac{1}{10^{95}} </math> |<math>10^{96}\cdot\left(10 - 10^{1-7}\right) \equiv 9.999999 \cdot 10^{96}</math> |- |decimal64||10||16||β383||384 |<math>10^{-383} \equiv \frac{1}{10^{383}} </math> |<math>10^{384}\cdot\left(10 - 10^{1-16}\right)</math> |- |decimal128||10||34||β6143||6144 |<math>10^{-6143} \equiv \frac{1}{10^{6143}} </math> |<math>10^{6144}\cdot\left(10 - 10^{1-34}\right)</math> |} For example, in the smallest decimal format in the table (decimal32), the range of positive normal numbers is 10<sup>−95</sup> through 9.999999 Γ 10<sup>96</sup>. Non-zero numbers smaller in magnitude than the smallest normal number are called [[subnormal number|'''subnormal''']] '''numbers''' (or ''denormal numbers''). Zero is considered neither normal nor subnormal. == See also == * [[Normalized number]] * [[Half-precision floating-point format]] * [[Single-precision floating-point format]] * [[Double-precision floating-point format]] == References == <references /> {{DEFAULTSORT:Normal Number (Computing)}} [[Category:Computer arithmetic]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Floating-point
(
edit
)
Template:For
(
edit
)
Template:Refimprove
(
edit
)