Median lethal dose

Revision as of 23:14, 24 May 2025 by imported>OAbot (Open access bot: url-access updated in citation with #oabot.)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Short description Template:Redirect Template:Cs1 config In toxicology, the median lethal dose, LD50 (abbreviation for "lethal dose, 50%"), LC50 (lethal concentration, 50%) or LCt50 is a toxic unit that measures the lethal dose of a given substance.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The value of LD50 for a substance is the dose required to kill half the members of a tested population after a specified test duration. LD50 figures are frequently used as a general indicator of a substance's acute toxicity. A lower LD50 is indicative of higher toxicity.

The term LD50 is generally attributed to John William Trevan.<ref name="Biographical Memoirs of Fellows of the Royal Society 1957 pp. 273–288">Template:Cite journal</ref> The test was created by J. W. Trevan in 1927.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The term semilethal dose is occasionally used in the same sense, in particular with translations of foreign language text, but can also refer to a sublethal dose. LD50 is usually determined by tests on animals such as laboratory mice. In 2011, the U.S. Food and Drug Administration approved alternative methods to LD50 for testing the cosmetic drug botox without animal tests.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>Template:Cite news</ref>

ConventionsEdit

The LD50 is usually expressed as the mass of substance administered per unit mass of test subject, typically as milligrams of substance per kilogram of body mass, sometimes also stated as nanograms (suitable for botulinum toxin), micrograms, or grams (suitable for paracetamol) per kilogram. Stating it this way allows the relative toxicity of different substances to be compared and normalizes for the variation in the size of the animals exposed (although toxicity does not always scale simply with body mass). For substances in the environment, such as poisonous vapors or substances in water that are toxic to fish, the concentration in the environment (per cubic metre or per litre) is used, giving a value of LC50. But in this case, the exposure time is important (see below).

The choice of 50% lethality as a benchmark avoids the potential for ambiguity of making measurements in the extremes and reduces the amount of testing required. However, this also means that LD50 is not the lethal dose for all subjects; some may be killed by much less, while others survive doses far higher than the LD50. Measures such as "LD1" and "LD99" (dosage required to kill 1% or 99%, respectively, of the test population) are occasionally used for specific purposes.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Lethal dosage often varies depending on the method of administration; for instance, many substances are less toxic when administered orally than when intravenously administered. For this reason, LD50 figures are often qualified with the mode of administration, e.g., "LD50 i.v."

The related quantities LD50/30 or LD50/60 are used to refer to a dose that without treatment will be lethal to 50% of the population within (respectively) 30 or 60 days. These measures are used more commonly within radiation health physics, for ionizing radiation, as survival beyond 60 days usually results in recovery.

A comparable measurement is LCt50, which relates to lethal dosage from exposure, where C is concentration and t is time. It is often expressed in terms of mg-min/m3. ICt50 is the dose that will cause incapacitation rather than death. These measures are commonly used to indicate the comparative efficacy of chemical warfare agents, and dosages are typically qualified by rates of breathing (e.g., resting = 10 L/min) for inhalation, or degree of clothing for skin penetration. The concept of Ct was first proposed by Fritz Haber and is sometimes referred to as Haber's law, which assumes that exposure to 1 minute of 100 mg/m3 is equivalent to 10 minutes of 10 mg/m3 (1 × 100 = 100, as does 10 × 10 = 100).

Some chemicals, such as hydrogen cyanide, are rapidly detoxified by the human body, and do not follow Haber's law. In these cases, the lethal concentration may be given simply as LC50 and qualified by a duration of exposure (e.g., 10 minutes). The material safety data sheets for toxic substances frequently use this form of the term even if the substance does follow Haber's law.

For disease-causing organisms, there is also a measure known as the median infective dose and dosage. The median infective dose (ID50) is the number of organisms received by a person or test animal qualified by the route of administration (e.g., 1,200 org/man per oral). Because of the difficulties in counting actual organisms in a dose, infective doses may be expressed in terms of biological assay, such as the number of LD50s to some test animal. In biological warfare infective dosage is the number of infective doses per cubic metre of air times the number of minutes of exposure (e.g., ICt50 is 100 medium doses - min/m3).

LimitationEdit

As a measure of toxicity, LD50 is somewhat unreliable and results may vary greatly between testing facilities due to factors such as the genetic characteristics of the sample population, animal species tested, environmental factors and mode of administration.<ref name="ReferenceA">Ernest Hodgson (2004). A Textbook of Modern Toxicology. Wiley-Interscience (3rd ed.).Template:Page needed</ref>

There can be wide variability between species as well; what is relatively safe for rats may very well be extremely toxic for humans (cf. paracetamol toxicity), and vice versa. For example, chocolate, comparatively harmless to humans, is known to be toxic to many animals. When used to test venom from venomous creatures, such as snakes, LD50 results may be misleading due to the physiological differences between mice, rats, and humans. Many venomous snakes are specialized predators on mice, and their venom may be adapted specifically to incapacitate mice; and mongooses may be exceptionally resistant. While most mammals have a very similar physiology, LD50 results may or may not have equal bearing upon every mammal species, such as humans, etc.

ExamplesEdit

Note: Comparing substances (especially drugs) to each other by LD50 can be misleading in many cases due (in part) to differences in effective dose (ED50). Therefore, it is more useful to compare such substances by therapeutic index, which is simply the ratio of LD50 to ED50.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

The following examples are listed in reference to LD50 values, in descending order, and accompanied by LC50 values, {bracketed}, when appropriate.

Substance Animal, route LD50
{LC50}
LD50 : g/kg
{LC50 : g/L}
standardised
Reference
Water (Template:Chem2) rat, oral >Template:Ntsh90,000 mg/kg >90 citation CitationClass=web

}}</ref>

Sucrose (table sugar) rat, oral Template:Ntsh29,700 mg/kg 29.7 citation CitationClass=web

}}</ref>

Corn syrup rat, oral Template:Ntsh25,800 mg/kg 25.8 citation CitationClass=web

}}</ref>

Glucose (blood sugar) rat, oral Template:Ntsh25,800 mg/kg 25.8 citation CitationClass=web

}}</ref>

Monosodium glutamate (MSG) rat, oral Template:Ntsh16,600 mg/kg 16.6 <ref name="Walker00">Template:Cite journal</ref>
Stevioside (from stevia) mice and rats, oral Template:Ntsh15,000 mg/kg 15 <ref>Template:Cite journal</ref>
Gasoline (petrol) rat Template:Ntsh14,063 mg/kg 14.0 citation CitationClass=web

}}</ref>

Vitamin C (ascorbic acid) rat, oral Template:Ntsh11,900 mg/kg 11.9 citation CitationClass=web

}}</ref>

Glyphosate (isopropylamine salt) rat, oral Template:Ntsh10,537 mg/kg 10.537 citation CitationClass=web

}}</ref>

Lactose (milk sugar) rat, oral Template:Ntsh10,000 mg/kg 10 citation CitationClass=web

}}</ref>

Aspartame mice, oral Template:Ntsh10,000 mg/kg 10 citation CitationClass=web

}}</ref>

Urea (Template:Chem2) rat, oral Template:Ntsh8,471 mg/kg 8.471 citation CitationClass=web

}}</ref>

Cyanuric acid rat, oral Template:Ntsh7,700 mg/kg 7.7 <ref name="Babayan">A.A. Babayan, A.V.Aleksandryan, "Toxicological characteristics of melamine cyanurate, melamine and cyanuric acid", Zhurnal Eksperimental'noi i Klinicheskoi Meditsiny, Vol.25, 345–9 (1985). Original article in Russian.</ref>
Cadmium sulfide (CdS) rat, oral Template:Ntsh7,080 mg/kg 7.08 <ref>Advanced Search – Alfa Aesar – A Johnson Matthey Company Template:Webarchive. Alfa.com. Retrieved on 2013-07-17.</ref>
Ethanol (Template:Chem2) rat, oral Template:Ntsh7,060 mg/kg 7.06 citation CitationClass=web

}}</ref>

Sodium isopropyl methylphosphonic acid (IMPA, metabolite of sarin) rat, oral Template:Ntsh6,860 mg/kg 6.86 <ref>Template:Cite report</ref>
Melamine rat, oral Template:Ntsh6,000 mg/kg 6 <ref name="Babayan" />
Taurine rat, oral Template:Ntsh5,000 mg/kg 5 citation CitationClass=web

}}</ref>

Melamine cyanurate rat, oral Template:Ntsh4,100 mg/kg 4.1 <ref name="Babayan" />
Fructose (fruit sugar) rat, oral 4,000 mg/kg 4 citation CitationClass=web

}}</ref>

Sodium molybdate (Template:Chem2) rat, oral 4,000 mg/kg 4 citation CitationClass=web

}}</ref>

Sodium chloride (table salt) rat, oral 3,000 mg/kg 3 citation CitationClass=web

}}</ref>

Paracetamol (acetaminophen) rat, oral 2000 mg/kg 2 citation CitationClass=web

}}</ref>

Aspirin (acetylsalicylic acid) rat, oral 1,600 mg/kg 1.6 citation CitationClass=web

}}</ref>

Delta-9-tetrahydrocannabinol (THC) rat, oral 1,270 mg/kg 1.27 <ref>Template:Cite journal</ref>
Cannabidiol (CBD) rat, oral 980 mg/kg 0.98 citation CitationClass=web

}}</ref>

Methanol (Template:Chem2) human, oral Template:Ntsh810 mg/kg 0.81 citation CitationClass=web

}}</ref>

Trinitrotoluene (TNT) rat, oral 790 mg/kg 0.790
Arsenic (As) rat, oral 763 mg/kg 0.763 citation CitationClass=web

}}</ref>

Ibuprofen rat, oral 636 mg/kg 0.636 citation CitationClass=web

}}</ref>

Formaldehyde (Template:Chem2) rat, oral 600–800 mg/kg 0.6 citation CitationClass=web

}}</ref>

Solanine (main alkaloid in the several plants in Solanaceae amongst them Solanum tuberosum) rat, oral (2.8 mg/kg human, oral) Template:Ntsh590 mg/kg 0.590 citation CitationClass=web

}}</ref>

Alkyl dimethyl benzalkonium chloride (ADBAC) rat, oral
fish, immersion
aquatic invertebrates, immersion
304.5 mg/kg
{0.28 mg/L}
{0.059 mg/L}
0.3045
{0.00028}
{0.000059}
<ref name=epaRED>Template:Cite report</ref>
Coumarin (benzopyrone, from Cinnamomum aromaticum and other plants) rat, oral 293 mg/kg 0.293 <ref>Coumarin Material Safety Data Sheet (MSDS) Template:Webarchive</ref>
Psilocybin (from psilocybin mushrooms) mouse, oral 280 mg/kg 0.280 <ref>Template:Cite book</ref>
Hydrochloric acid (HCl) rat, oral 238–277 mg/kg 0.238 citation CitationClass=web

}}</ref>

Ketamine rat, intraperitoneal 229 mg/kg 0.229 citation CitationClass=web

}}</ref>

Caffeine rat, oral 192 mg/kg 0.192 <ref>Template:Cite journal</ref>
Arsenic trisulfide (Template:Chem2) rat, oral 185–6,400 mg/kg 0.185–6.4 citation CitationClass=web

}}</ref>

Sodium nitrite (Template:Chem2) rat, oral 180 mg/kg 0.18 citation CitationClass=web

}}Template:Dead link</ref>

Methylenedioxymethamphetamine (MDMA) rat, oral 160 mg/kg 0.18 <ref>Template:Cite journal</ref>
Uranyl acetate dihydrate (Template:Chem2) mouse, oral 136 mg/kg 0.136 citation CitationClass=web

}}</ref>

Dichlorodiphenyltrichloroethane (DDT) mouse, oral 135 mg/kg 0.135 <ref>Template:Cite book</ref>
Uranium (U) mice, oral Template:Ntsh114 mg/kg (estimated) 0.114 <ref name=Depluranium4/>
Bisoprolol mouse, oral 100 mg/kg 0.1 citation CitationClass=web

}}</ref>

Cocaine mouse, oral 96 mg/kg 0.096 citation CitationClass=web

}}</ref>

Cobalt(II) chloride (Template:Chem2) rat, oral 80 mg/kg 0.08 citation CitationClass=web

}}</ref>

Cadmium oxide (CdO) rat, oral 72 mg/kg 0.072 <ref>Safety (MSDS) data for cadmium oxideTemplate:Dead link</ref>
Thiopental sodium (used in lethal injection) rat, oral 64 mg/kg 0.064 citation CitationClass=web

}}</ref>

Demeton-S-methyl rat, oral 60 mg/kg 0.060 citation CitationClass=web

}}</ref>

Methamphetamine rat, intraperitoneal 57 mg/kg 0.057 <ref>Template:Cite book</ref>
Sodium fluoride (NaF) rat, oral 52 mg/kg 0.052 citation CitationClass=web

}}</ref>

Nicotine mouse and rat, oral

human, smoking

50 mg/kg 0.05 <ref name=Mayer>Template:Cite journal</ref>
Pentaborane human, oral 50 mg/kg 0.05 citation CitationClass=web

}}</ref>

Capsaicin mouse, oral 47.2 mg/kg 0.0472 citation CitationClass=web

}}</ref>

Vitamin D3 (cholecalciferol) rat, oral 37 mg/kg 0.037 citation CitationClass=web

}}</ref>

Piperidine (from black pepper) rat, oral 30 mg/kg 0.030 citation CitationClass=web

}}</ref>

Heroin (diamorphine) mouse, intravenous 21.8 mg/kg 0.0218 citation CitationClass=web

}}</ref>

Lysergic acid diethylamide (LSD) rat, intravenous 16.5 mg/kg 0.0165 <ref>Erowid LSD (Acid) Vault : Fatalities / Deaths Template:Webarchive. Erowid.org. Retrieved on 2013-07-17.</ref>
Arsenic trioxide (Template:Chem2) rat, oral 14 mg/kg 0.014 citation CitationClass=web

}}</ref>

Metallic arsenic (As) rat, intraperitoneal 13 mg/kg 0.013 citation CitationClass=web

}}</ref>

Sodium cyanide (NaCN) rat, oral 6.4 mg/kg 0.0064 citation CitationClass=web

}}</ref>

Chlorotoxin (CTX, from scorpions) mice 4.3 mg/kg 0.0043 citation CitationClass=web

}}</ref>

Hydrogen cyanide (HCN) mouse, oral 3.7 mg/kg 0.0037 citation CitationClass=web

}}</ref>

Carfentanil rat, intravenous 3.39 mg/kg 0.00339 citation CitationClass=web

}}</ref>

Nicotine (from various Solanaceae genera) mice, oral 3.3 mg/kg 0.0033 <ref name=Mayer/>
White phosphorus (P) rat, oral 3.03 mg/kg 0.00303 citation CitationClass=web

}}</ref>

Strychnine (from Strychnos nux-vomica) human, oral 1–2 mg/kg (estimated) 0.001–0.002 <ref>INCHEM: Chemical Safety Information from Intergovernmental Organizations: Strychnine Template:Webarchive.</ref>
Aconitine (from Aconitum napellus and related species) human, oral Template:Ntsh1–2 mg/kg 0.001–0.002 <ref>Template:Cite journal</ref>
Mercury(II) chloride (Template:Chem2) rat, oral 1 mg/kg 0.001 citation CitationClass=web

}}</ref>

Cantharidin (from blister beetles) human, oral 500 μg/kg 0.0005 <ref>Template:Cite book</ref>
Aflatoxin B1 (from Aspergillus flavus mold) rat, oral 480 μg/kg 0.00048 citation CitationClass=web

}}</ref>

Plutonium (Pu) dog, intravenous 320 μg/kg 0.00032 <ref>Template:Cite journal</ref>
Bufotoxin (from Bufo toads) cat, intravenous Template:Ntsh300 μg/kg 0.0003 citation CitationClass=web

}}</ref>

Brodifacoum rat, oral 270 μg/kg 0.00027 citation CitationClass=web

}}</ref>

Caesium-137 (Template:Chem) mouse, parenteral Template:Ntsh21.5 μCi/g 0.000245 <ref>Template:Cite book [(21.5 μCi/g) × (1000 g/kg) × (0.0114 μg/μCi) = 245 μg/kg]</ref>
Sodium fluoroacetate (Template:Chem2) rat, oral 220 μg/kg 0.00022 <ref>Template:Cite book</ref>
Chlorine trifluoride (ClF3) mouse, absorption through skin 178 μg/kg 0.000178 citation CitationClass=web

}}</ref>

Sarin mouse, subcutaneous injection Template:Ntsh172 μg/kg 0.000172 <ref>Template:Cite journal</ref>
Robustoxin (from Sydney funnel-web spider) mice Template:Ntsh150 μg/kg 0.000150 <ref>Template:Cite journal</ref>
VX human, oral, inhalation, absorption through skin/eyes Template:Ntsh140 μg/kg (estimated) 0.00014 <ref>Template:Cite journal</ref>
Venom of the Brazilian wandering spider rat, subcutaneous Template:Ntsh134 μg/kg 0.000134 <ref>Venomous Animals and their Venoms, vol. III, ed. Wolfgang Bücherl and Eleanor Buckley</ref>
Amatoxin (from Amanita phalloides mushrooms) human, oral 100 μg/kg 0.0001 <ref>Template:Cite journal</ref><ref>Template:Cite book</ref>
Dimethylmercury (Template:Chem2) human, transdermal Template:Ntsh50 μg/kg 0.000050 <ref>Template:Cite journal</ref>
TBPO (t-Butyl-bicyclophosphate) mouse, intravenous 36 μg/kg 0.000036 <ref name="pmid452023">Template:Cite journal</ref>
Fentanyl monkey 30 μg/kg 0.00003 citation CitationClass=web

}}</ref>

Venom of the inland taipan rat, subcutaneous Template:Ntsh25 μg/kg 0.000025 <ref>LD50 for various snakes Template:Webarchive. Seanthomas.net. Retrieved on 2013-07-17.</ref>
Ricin (from castor oil plant) rat, intraperitoneal
rat, oral
Template:Ntsh22 μg/kg
20–30 mg/kg
0.000022
0.02
<ref>Template:Cite journal</ref>
2,3,7,8-Tetrachlorodibenzodioxin (TCDD, in Agent Orange) rat, oral Template:Ntsh20 μg/kg 0.00002
Tetrodotoxin from the blue-ringed octopus intravenous Template:Ntsh8.2 μg/kg 0.0000082 <ref>Template:Cite journal</ref>
CrTX-A (from Carybdea rastonii box jellyfish venom) crayfish, intraperitoneal Template:Ntsh5 μg/kg 0.000005 <ref>Template:Cite journal</ref>
Latrotoxin (from widow spider venom) mice Template:Ntsh4.3 μg/kg 0.0000043 citation CitationClass=web

}}</ref>Template:Self-published inline

Epibatidine (from Epipedobates anthonyi poison dart frog) mouse, intravenous 1.46-13.98 μg/kg 0.00000146 <ref>Template:Cite journal</ref>
Batrachotoxin (from poison dart frog) human, sub-cutaneous injection Template:Ntsh2–7 μg/kg (estimated) 0.000002 <ref name=":0">Template:Cite journal</ref>
Abrin (from rosary pea) mice, intravenously
human, inhalation
human, oral
0.7 μg/kg
3.3 μg/kg
10–1000 μg/kg
0.0000007
0.0000033
0.00001–0.001
Template:Citation needed
Saxitoxin (from certain marine dinoflagellates) human, intravenously
human, oral
0.6 μg/kg
5.7 μg/kg
0.0000006
0.0000057
<ref name=":0" />
Pacific ciguatoxin-1 (from ciguateric fish) mice, intraperitoneal 250 ngTemplate:Ntsh/kg 0.00000025 <ref>Template:Cite journal</ref>
Palytoxin (from Palythoa coral) mouse, intravenous
Template:Fix
45 ng/kg
2.3–31.5 μg/kg
0.000000045
0.0000023
<ref>Template:Cite journal</ref>
Maitotoxin (from ciguateric fish) mouse, intraperitoneal 50 ngTemplate:Ntsh/kg 0.00000005 citation CitationClass=web

}}</ref>

Polonium-210 (Template:Chem) human, inhalation Template:Ntsh10 ng/kg (estimated) 0.00000001 <ref>Topic 2 Toxic Chemicals and Toxic Effects Template:Webarchive</ref>
Diphtheria toxin (from Corynebacterium) mice Template:Ntsh10 ng/kg 0.00000001 citation CitationClass=web

}}</ref>

Shiga toxin (from Shigella bacteria) mice Template:Ntsh2 ng/kg 0.000000002 <ref name="biology.unm.edu"/>
Tetanospasmin (from Clostridium tetani) mice Template:Ntsh2 ng/kg 0.000000002 <ref name="biology.unm.edu"/>
Botulinum toxin (from Clostridium botulinum) human, oral, injection, inhalation Template:Ntsh1 ng/kg (estimated) 0.000000001 <ref>Template:Cite book</ref>
Ionizing radiation human, irradiation 3–5 Gy (Gray) <ref>Template:Cite journal</ref><ref>{{#invoke:citation/CS1|citation CitationClass=web

}}</ref><ref>{{#invoke:citation/CS1|citation

CitationClass=web

}}</ref>

Poison scaleEdit

File:Poison-Scale-long.jpg
Negative values of the decimal logarithm of the median lethal dose LD50 (Template:Math) on a linearized toxicity scale encompassing 11 orders of magnitude. Water occupies the lowest toxicity position (1) while the toxicity scale is dominated by the botulinum toxin (12).<ref>Template:Cite journal</ref>

The LD50 values have a very wide range. The botulinum toxin as the most toxic substance known has an LD50 value of 1 ng/kg, while the most non-toxic substance water has an LD50 value of more than 90 g/kg; a difference of about 1 in 100 billion, or 11 orders of magnitude. As with all measured values that differ by many orders of magnitude, a logarithmic view is advisable. Well-known examples are the indication of the earthquake strength using the Richter scale, the pH value, as a measure for the acidic or basic character of an aqueous solution or of loudness in decibels. In this case, the negative decimal logarithm of the LD50 values, which is standardized in kg per kg body weight, is considered Template:Math.

The dimensionless value found can be entered in a toxin scale. Water as the baseline substance is nearly 1 in the negative logarithmic toxin scale.

ProceduresEdit

A number of procedures have been defined to derive the LD50. The earliest was the 1927 "conventional" procedure by Trevan, which requires 40 or more animals. The fixed-dose procedure, proposed in 1984, estimates a level of toxicity by feeding at defined doses and looking for signs of toxicity (without requiring death).<ref>Template:Cite journal</ref> The up-and-down procedure, proposed in 1985, yields an LD50 value while dosing only one animal at a time.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>

See alsoEdit

Other measures of toxicityEdit

Template:Div col

Template:Div col end

Related measuresEdit

ReferencesEdit

Template:Reflist

Further readingEdit

Template:Refbegin

Template:Refend

External linksEdit

Template:Pharmacology Template:Toxicology