Template:Short description {{#invoke:sidebar|collapsible | class = plainlist | titlestyle = padding-bottom:0.25em; | pretitle = Part of a series of articles about | title = Calculus | image = <math>\int_{a}^{b} f'(t) \, dt = f(b) - f(a)</math> | listtitlestyle = text-align:center; | liststyle = border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa; | expanded = differential | abovestyle = padding:0.15em 0.25em 0.3em;font-weight:normal; | above =
Template:EndflatlistTemplate:Startflatlist
| list2name = differential | list2titlestyle = display:block;margin-top:0.65em; | list2title = Template:Bigger | list2 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | heading1 = Definitions | content1 =
| heading2 = Concepts | content2 =
- Differentiation notation
- Second derivative
- Implicit differentiation
- Logarithmic differentiation
- Related rates
- Taylor's theorem
| heading3 = Rules and identities | content3 =
- Sum
- Product
- Chain
- Power
- Quotient
- L'Hôpital's rule
- Inverse
- General Leibniz
- Faà di Bruno's formula
- Reynolds
}}
| list3name = integral | list3title = Template:Bigger | list3 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Definitions
| content2 =
- Antiderivative
- Integral (improper)
- Riemann integral
- Lebesgue integration
- Contour integration
- Integral of inverse functions
| heading3 = Integration by | content3 =
- Parts
- Discs
- Cylindrical shells
- Substitution (trigonometric, tangent half-angle, Euler)
- Euler's formula
- Partial fractions (Heaviside's method)
- Changing order
- Reduction formulae
- Differentiating under the integral sign
- Risch algorithm
}}
| list4name = series | list4title = Template:Bigger | list4 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Convergence tests | content2 =
- Summand limit (term test)
- Ratio
- Root
- Integral
- Direct comparison
Limit comparison- Alternating series
- Cauchy condensation
- Dirichlet
- Abel
}}
| list5name = vector | list5title = Template:Bigger | list5 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Theorems | content2 =
}}
| list6name = multivariable | list6title = Template:Bigger | list6 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | heading1 = Formalisms | content1 =
| heading2 = Definitions | content2 =
- Partial derivative
- Multiple integral
- Line integral
- Surface integral
- Volume integral
- Jacobian
- Hessian
}}
| list7name = advanced | list7title = Template:Bigger | list7 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
}}
| list8name = specialized | list8title = Template:Bigger | list8 =
| list9name = miscellanea | list9title = Template:Bigger | list9 =
- Precalculus
- History
- Glossary
- List of topics
- Integration Bee
- Mathematical analysis
- Nonstandard analysis
}} In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let <math>h(x)=\frac{f(x)}{g(x)}</math>, where both Template:Mvar and Template:Mvar are differentiable and <math>g(x)\neq 0.</math> The quotient rule states that the derivative of Template:Math is
- <math>h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}.</math>
It is provable in many ways by using other derivative rules.
ExamplesEdit
Example 1: Basic exampleEdit
Given <math>h(x)=\frac{e^x}{x^2}</math>, let <math>f(x)=e^x, g(x)=x^2</math>, then using the quotient rule:<math display="block">\begin{align}
\frac{d}{dx} \left(\frac{e^x}{x^2}\right) &= \frac{\left(\frac{d}{dx}e^x\right)(x^2) - (e^x)\left(\frac{d}{dx} x^2\right)}{(x^2)^2} \\ &= \frac{(e^x)(x^2) - (e^x)(2x)}{x^4} \\ &= \frac{x^2 e^x - 2x e^x}{x^4} \\ &= \frac{x e^x - 2 e^x}{x^3} \\ &= \frac{e^x(x - 2)}{x^3}. \end{align}</math>
Example 2: Derivative of tangent functionEdit
The quotient rule can be used to find the derivative of <math>\tan x = \frac{\sin x}{\cos x}</math> as follows: <math display="block">\begin{align}
\frac{d}{dx} \tan x &= \frac{d}{dx} \left(\frac{\sin x}{\cos x}\right) \\ &= \frac{\left(\frac{d}{dx}\sin x\right)(\cos x) - (\sin x)\left(\frac{d}{dx}\cos x\right)}{\cos^2 x} \\ &= \frac{(\cos x)(\cos x) - (\sin x)(-\sin x)}{\cos^2 x} \\ &= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \\ &= \frac{1}{\cos^2 x} = \sec^2 x. \end{align}</math>
Reciprocal ruleEdit
{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} The reciprocal rule is a special case of the quotient rule in which the numerator <math>f(x)=1</math>. Applying the quotient rule gives<math display="block">h'(x)=\frac{d}{dx}\left[\frac{1}{g(x)}\right]=\frac{0 \cdot g(x) - 1 \cdot g'(x)}{g(x)^2}=\frac{-g'(x)}{g(x)^2}.</math>
Utilizing the chain rule yields the same result.
ProofsEdit
Proof from derivative definition and limit propertiesEdit
Let <math>h(x) = \frac{f(x)}{g(x)}.</math> Applying the definition of the derivative and properties of limits gives the following proof, with the term <math>f(x) g(x)</math> added and subtracted to allow splitting and factoring in subsequent steps without affecting the value:<math display="block">\begin{align}
h'(x) &= \lim_{k\to 0} \frac{h(x+k) - h(x)}{k} \\ &= \lim_{k\to 0} \frac{\frac{f(x+k)}{g(x+k)} - \frac{f(x)}{g(x)}}{k} \\ &= \lim_{k\to 0} \frac{f(x+k)g(x) - f(x)g(x+k)}{k \cdot g(x)g(x+k)} \\ &= \lim_{k\to 0} \frac{f(x+k)g(x) - f(x)g(x+k)}{k} \cdot \lim_{k\to 0}\frac{1}{g(x)g(x+k)} \\ &= \lim_{k\to 0} \left[\frac{f(x+k)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x+k)}{k} \right] \cdot \frac{1}{[g(x)]^2} \\ &= \left[\lim_{k\to 0} \frac{f(x+k)g(x) - f(x)g(x)}{k} - \lim_{k\to 0}\frac{f(x)g(x+k) - f(x)g(x)}{k} \right] \cdot \frac{1}{[g(x)]^2} \\ &= \left[\lim_{k\to 0} \frac{f(x+k) - f(x)}{k} \cdot g(x) - f(x) \cdot \lim_{k\to 0}\frac{g(x+k) - g(x)}{k} \right] \cdot \frac{1}{[g(x)]^2} \\ &= \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}. \end{align}</math>The limit evaluation <math>\lim_{k \to 0}\frac{1}{g(x+k)g(x)}=\frac{1}{[g(x)]^2}</math> is justified by the differentiability of <math>g(x)</math>, implying continuity, which can be expressed as <math>\lim_{k \to 0}g(x+k) = g(x)</math>.
Proof using implicit differentiationEdit
Let <math>h(x) = \frac{f(x)}{g(x)},</math> so that <math>f(x) = g(x)h(x).</math>
The product rule then gives <math>f'(x)=g'(x)h(x) + g(x)h'(x).</math>
Solving for <math>h'(x)</math> and substituting back for <math>h(x)</math> gives: <math display="block">\begin{align}
h'(x) &= \frac{f'(x) -g'(x)h(x)}{g(x)} \\ &= \frac{f'(x) - g'(x)\cdot\frac{f(x)}{g(x)}}{g(x)} \\ &= \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}. \end{align}</math>
Proof using the reciprocal rule or chain ruleEdit
Let <math>h(x) = \frac{f(x)}{g(x)} = f(x) \cdot \frac{1}{g(x)}.</math>
Then the product rule gives <math>h'(x) = f'(x)\cdot\frac{1}{g(x)} + f(x) \cdot \frac{d}{dx}\left[\frac{1}{g(x)}\right].</math>
To evaluate the derivative in the second term, apply the reciprocal rule, or the power rule along with the chain rule: <math display="block">\frac{d}{dx}\left[\frac{1}{g(x)}\right] = -\frac{1}{g(x)^2} \cdot g'(x) = \frac{-g'(x)}{g(x)^2}.</math>
Substituting the result into the expression gives<math display="block">\begin{align}
h'(x) &= f'(x)\cdot\frac{1}{g(x)} + f(x)\cdot\left[\frac{-g'(x)}{g(x)^2}\right] \\
&= \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g(x)^2} \\
&= {\frac{g(x)}{g(x)}}\cdot{\frac{f'(x)}{g(x)}} - \frac{f(x)g'(x)}{g(x)^2} \\
&= \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}. \end{align}</math>
Proof by logarithmic differentiationEdit
Let <math>h(x)=\frac{f(x)}{g(x)}.</math> Taking the absolute value and natural logarithm of both sides of the equation gives <math display="block">\ln|h(x)|=\ln\left|\frac{f(x)}{g(x)}\right|</math>
Applying properties of the absolute value and logarithms, <math display="block">\ln|h(x)|=\ln|f(x)|-\ln|g(x)|</math>
Taking the logarithmic derivative of both sides, <math display="block">\frac{h'(x)}{h(x)}=\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}</math>
Solving for <math>h'(x)</math> and substituting back <math>\tfrac{f(x)}{g(x)}</math> for <math>h(x)</math> gives: <math display="block">\begin{align} h'(x)&=h(x)\left[\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}\right]\\ &=\frac{f(x)}{g(x)}\left[\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}\right]\\ &=\frac{f'(x)}{g(x)}-\frac{f(x)g'(x)}{g(x)^2}\\ &=\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}. \end{align}</math>
Taking the absolute value of the functions is necessary for the logarithmic differentiation of functions that may have negative values, as logarithms are only real-valued for positive arguments. This works because <math>\tfrac{d}{dx}(\ln|u|)=\tfrac{u'}{u}</math>, which justifies taking the absolute value of the functions for logarithmic differentiation.
Higher order derivativesEdit
Implicit differentiation can be used to compute the Template:Mvarth derivative of a quotient (partially in terms of its first Template:Math derivatives). For example, differentiating <math>f=gh</math> twice (resulting in <math>f = gh + 2g'h' + gh</math>) and then solving for <math>h</math> yields<math display="block">h = \left(\frac{f}{g}\right) = \frac{f-gh-2g'h'}{g}.</math>
See alsoEdit
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link