Template:Short description

File:Shell integral undergraph - around y-axis.png
A volume is approximated by a collection of hollow cylinders. As the cylinder walls get thinner the approximation gets better. The limit of this approximation is the shell integral.

{{#invoke:sidebar|collapsible | class = plainlist | titlestyle = padding-bottom:0.25em; | pretitle = Part of a series of articles about | title = Calculus | image = <math>\int_{a}^{b} f'(t) \, dt = f(b) - f(a)</math> | listtitlestyle = text-align:center; | liststyle = border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa; | expanded = integral | abovestyle = padding:0.15em 0.25em 0.3em;font-weight:normal; | above =

Template:Startflatlist

Template:EndflatlistTemplate:Startflatlist

Template:Endflatlist

| list2name = differential | list2titlestyle = display:block;margin-top:0.65em; | list2title = Template:Bigger | list2 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | heading1 = Definitions
 | content1 =
 | heading2 = Concepts
 | content2 =
 | heading3 = Rules and identities
 | content3 =
}}

| list3name = integral | list3title = Template:Bigger | list3 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =

| heading2 = Definitions

 | content2 =
 | heading3 = Integration by
 | content3 =
}}

| list4name = series | list4title = Template:Bigger | list4 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
 | heading2 = Convergence tests
 | content2 =
}}

| list5name = vector | list5title = Template:Bigger | list5 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
 | heading2 = Theorems
 | content2 =
}}

| list6name = multivariable | list6title = Template:Bigger | list6 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | heading1 = Formalisms
 | content1 =
 | heading2 = Definitions
 | content2 =
}}

| list7name = advanced | list7title = Template:Bigger | list7 ={{#invoke:sidebar|sidebar|child=yes

 |contentclass=hlist
 | content1 =
}}

| list8name = specialized | list8title = Template:Bigger | list8 =

| list9name = miscellanea | list9title = Template:Bigger | list9 =

}}

Shell integration (the shell method in integral calculus) is a method for calculating the volume of a solid of revolution, when integrating along an axis perpendicular to the axis of revolution. This is in contrast to disc integration which integrates along the axis parallel to the axis of revolution.

DefinitionEdit

The shell method goes as follows: Consider a volume in three dimensions obtained by rotating a cross-section in the Template:Mvar-plane around the Template:Mvar-axis. Suppose the cross-section is defined by the graph of the positive function Template:Math on the interval Template:Math. Then the formula for the volume will be:

<math>2 \pi \int_a^b x f(x)\, dx</math>

If the function is of the Template:Mvar coordinate and the axis of rotation is the Template:Mvar-axis then the formula becomes:

<math>2 \pi \int_a^b y f(y)\, dy</math>

If the function is rotating around the line Template:Math then the formula becomes:<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

<math>\begin{cases}

\displaystyle 2 \pi \int_a^b (x-h) f(x)\,dx, & \text{if}\ h \le a < b\\ \displaystyle 2 \pi \int_a^b (h-x) f(x)\,dx, & \text{if}\ a < b \le h, \end{cases}</math> and for rotations around Template:Math it becomes

<math>\begin{cases}

\displaystyle 2 \pi \int_a^b (y-k) f(y)\,dy, & \text{if}\ k \le a < b\\ \displaystyle 2 \pi \int_a^b (k-y) f(y)\,dy, & \text{if}\ a < b \le k. \end{cases}</math>

The formula is derived by computing the double integral in polar coordinates.

Derivation of the formulaEdit

ExampleEdit

Consider the volume, depicted below, whose cross section on the interval [1, 2] is defined by:

<math>y = 8(x-1)^2(x-2)^2</math>

Template:Multiple image

With the shell method we simply use the following formula:

<math>V = 16 \pi \int_1^2 x ((x-1)^2(x-2)^2) \,dx </math>

By expanding the polynomial, the integration is easily done giving Template:Sfrac<math>\pi</math> cubic units.

Comparison With Disc IntegrationEdit

Much more work is needed to find the volume if we use disc integration. First, we would need to solve <math>y = 8(x-1)^2(x-2)^2</math> for Template:Mvar. Next, because the volume is hollow in the middle, we would need two functions: one that defined an outer solid and one that defined the inner hollow. After integrating each of these two functions, we would subtract them to yield the desired volume.

See alsoEdit

ReferencesEdit

Template:Reflist

  • {{#invoke:Template wrapper|{{#if:|list|wrap}}|_template=cite web

|_exclude=urlname, _debug, id |url = https://mathworld.wolfram.com/{{#if:MethodofShells%7CMethodofShells.html}} |title = Method of Shells |author = Weisstein, Eric W. |website = MathWorld |access-date = |ref = Template:SfnRef }}

Template:Calculus topics