Language of mathematics

Revision as of 11:33, 2 March 2025 by imported>D.Lazard (→‎Features: use of {{tmath}} for a better spacing around formulas)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Short description Template:More citations needed The language of mathematics or mathematical language is an extension of the natural language (for example English) that is used in mathematics and in science for expressing results (scientific laws, theorems, proofs, logical deductions, etc.) with concision, precision and unambiguity.

FeaturesEdit

The main features of the mathematical language are the following.

  • Use of common words with a derived meaning, generally more specific and more precise. For example, "or" means "one, the other or both", while, in common language, "both" is sometimes included and sometimes not. Also, a "line" is straight and has zero width.
  • Use of common words with a meaning that is completely different from their common meaning. For example, a mathematical ring is not related to any other meaning of "ring". Real numbers and imaginary numbers are two sorts of numbers, none being more real or more imaginary than the others.
  • Use of neologisms. For example polynomial, homomorphism.
  • Use of symbols as words or phrases. For example, <math>A=B</math> and <math>\forall x</math> are respectively read as "<math>A</math> equals <math>B</math>" and Template:Nowrap
  • Use of formulas as part of sentences. For example: "Template:Tmathrepresents quantitatively the mass–energy equivalence." A formula that is not included in a sentence is generally meaningless, since the meaning of the symbols may depend on the context: in "Template:Tmath", this is the context that specifies that Template:Mvar is the energy of a physical body, Template:Mvar is its mass, and Template:Mvar is the speed of light.
  • Use of phrases that cannot be decomposed into their components. In particular, adjectives do not always restrict the meaning of the corresponding noun, and may change the meaning completely. For example, most algebraic integers are not integers and integers are specific algebraic integers. So, an algebraic integer is not an integer that is algebraic.
  • Use of mathematical jargon that consists of phrases that are used for informal explanations or shorthands. For example, "killing" is often used in place of "replacing with zero", and this led to the use of assassinator and annihilator as technical words.

Understanding mathematical textEdit

The consequence of these features is that a mathematical text is generally not understandable without some prerequisite knowledge. For example, the sentence "a free module is a module that has a basis" is perfectly correct, although it appears only as a grammatically correct nonsense, when one does not know the definitions of basis, module, and free module.

H. B. Williams, an electrophysiologist, wrote in 1927:

<templatestyles src="Template:Blockquote/styles.css" />

Template:ErrorTemplate:Main other{{#if:|{{#if:|}}

}}

{{#invoke:Check for unknown parameters|check|unknown=Template:Main other|preview=Page using Template:Blockquote with unknown parameter "_VALUE_"|ignoreblank=y| 1 | 2 | 3 | 4 | 5 | author | by | char | character | cite | class | content | multiline | personquoted | publication | quote | quotesource | quotetext | sign | source | style | text | title | ts }}

See alsoEdit

ReferencesEdit

Template:Reflist

Further readingEdit

Linguistic point of viewEdit

  • Keith Devlin (2000) The Language of Mathematics: Making the Invisible Visible, Holt Publishing.
  • Kay O'Halloran (2004) Mathematical Discourse: Language, Symbolism and Visual Images, Continuum.
  • R. L. E. Schwarzenberger (2000), "The Language of Geometry", in A Mathematical Spectrum Miscellany, Applied Probability Trust.

In educationEdit

  • Lawrence. A. Chang (1983) Handbook for spoken mathematics The regents of the University of California, [1]
  • F. Bruun, J. M. Diaz, & V. J. Dykes (2015) The Language of Mathematics. Teaching Children Mathematics, 21(9), 530–536.
  • J. O. Bullock (1994) Literacy in the Language of Mathematics. The American Mathematical Monthly, 101(8), 735–743.
  • L. Buschman (1995) Communicating in the Language of Mathematics. Teaching Children Mathematics, 1(6), 324–329.
  • B. R. Jones, P. F. Hopper, D. P. Franz, L. Knott, & T. A. Evitts (2008) Mathematics: A Second Language. The Mathematics Teacher, 102(4), 307–312. JSTOR.
  • C. Morgan (1996) “The Language of Mathematics”: Towards a Critical Analysis of Mathematics Texts. For the Learning of Mathematics, 16(3), 2–10.
  • J. K. Moulton (1946) The Language of Mathematics. The Mathematics Teacher, 39(3), 131–133.

Template:MathematicalSymbolsNotationLanguage