Template:About Template:Infobox number 400 (four hundred) is the natural number following 399 and preceding 401. Template:TOC limit

Mathematical propertiesEdit

A circle is divided into 400 grads.

Integers from 401 to 499Edit

400sEdit

401Edit

401 is a prime number, tetranacci number,<ref>Template:Cite OEIS</ref> Chen prime,<ref name=A109611>Template:Cite OEIS</ref> prime index prime

402Edit

402 = 2 × 3 × 67, sphenic number, nontotient, Harshad number, number of graphs with 8 nodes and 9 edges<ref>Template:Cite OEIS</ref>

403Edit

403 = 13 × 31, heptagonal number, Mertens function returns 0.<ref name=A028442/>

404Edit

404 = 22 × 101, Mertens function returns 0,<ref name=A028442/> nontotient, noncototient, number of integer partitions of 20 with an alternating permutation.<ref>Template:Cite OEIS</ref>

405Edit

405 = 34 × 5, Mertens function returns 0,<ref name=A028442/> Harshad number, pentagonal pyramidal number;

406Edit

406 = 2 × 7 × 29, sphenic number, 28th triangular number,<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> centered nonagonal number,<ref>Template:Cite OEIS</ref> even nontotient, Narayana's cow number<ref>Template:Cite OEIS</ref>

Template:Sister project

  • 406 is a poem by John Boyle O'Reilly. It was believed to have been the number of one of O'Reilly's prison cells, and was the number of his first hotel room after he arrived in the United States. Hence the number had a mystical significance to him, as intimated in the poem.
  • Peugeot 406 car.
  • Area code for all of Montana.

407Edit

407 = 11 × 37,

  • Sum of cubes of 4, 0 and 7 (43 + 03 + 73 = 407); narcissistic number<ref>Template:Cite OEIS</ref>
  • Sum of three consecutive primes (131 + 137 + 139)
  • Mertens function returns 0<ref name=A028442/>
  • Harshad number
  • Lazy caterer number <ref name=A000124>Template:Cite OEIS</ref>
  • HTTP status code for "Proxy Authentication Required"
  • Area code for Orlando, Florida
  • Colloquial name for the Express Toll Route in Ontario

408Edit

408 = 23 × 3 × 17

409Edit

409 is a prime number, Chen prime,<ref name=A109611/> centered triangular number.<ref name=A005448>Template:Cite OEIS</ref>

|CitationClass=web }}</ref>

410sEdit

410Edit

410 = 2 × 5 × 41, sphenic number, sum of six consecutive primes (59 + 61 + 67 + 71 + 73 + 79), nontotient, Harshad number, number of triangle-free graphs on 8 vertices<ref>Template:Cite OEIS</ref>

411Edit

411 = 3 × 137, self number,<ref name=A003052>Template:Cite OEIS</ref>

412Edit

412 = 22 × 103, nontotient, noncototient, sum of twelve consecutive primes (13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), 41264 + 1 is prime

413Edit

413 = 7 × 59, Mertens function returns 0,<ref name=A028442/> self number,<ref name=A003052/> Blum integer

414Edit

414 = 2 × 32 × 23, Mertens function returns 0,<ref name=A028442/> nontotient, Harshad number, number of balanced partitions of 31<ref>Template:Cite OEIS</ref>

<math>\sum_{n=0}^{10}{414}^{n}</math> is prime<ref name=A162862>Template:Cite OEIS</ref>

415Edit

415 = 5 × 83, logarithmic number<ref>Template:Cite OEIS</ref>

  • HTTP status code for "Unsupported Media Type"
  • 415 Records, a record label
  • 415 refers to California Penal Code, section 415, pertaining to public fighting, public disturbance, and public use of offensive words likely to provoke an immediate violent reaction.
  • Area code 415, a telephone area code for San Francisco, California

416Edit

416 = 25 × 13, number of independent vertex sets and vertex covers in the 6-sunlet graph<ref>Template:Cite OEIS</ref>

417Edit

417 = 3 × 139, Blum integer

418Edit

418 = 2 × 11 × 19; sphenic number,<ref>Template:Cite OEIS</ref> balanced number.<ref>Template:Cite OEIS</ref> It is also the fourth 71-gonal number.<ref>Template:Cite book</ref>

That number is 142,857,157,142,857,142,856,999,999,985,714,285,714,285,857,142,857,142,855,714,285,571,428,571,428,572,857,143.</ref>

419Edit

A prime number, Sophie Germain prime,<ref name=A005384>Template:Cite OEIS</ref> Chen prime,<ref name=A109611/> Eisenstein prime with no imaginary part, highly cototient number,<ref>Template:Cite OEIS</ref> Mertens function returns 0<ref name=A028442/>

  • Refers to the Nigerian advance fee fraud scheme (after the section of the Nigerian Criminal Code it violates)
  • The Area Code for Toledo, OH and other surrounding areas.

420sEdit

420Edit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}}

Template:See also

421Edit

422Edit

422 = 2 × 211, Mertens function returns 0,<ref name=A028442/> nontotient, since 422 = 202 + 20 + 2 it is the maximum number of regions into which 21 intersecting circles divide the plane.<ref name=A014206>Template:Cite OEIS</ref>

423Edit

423 = 32 × 47, Mertens function returns 0,<ref name=A028442/> Harshad number, number of secondary structures of RNA molecules with 10 nucleotides<ref>Template:Cite OEIS</ref>

424Edit

424 = 23 × 53, sum of ten consecutive primes (23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61), Mertens function returns 0,<ref name=A028442/> refactorable number,<ref name=A033950>Template:Cite OEIS</ref> self number<ref name=A003052/>

425Edit

425 = 52 × 17, pentagonal number,<ref name=A000326>Template:Cite OEIS</ref> centered tetrahedral number, sum of three consecutive primes (137 + 139 + 149), Mertens function returns 0,<ref name=A028442/> the second number that can be expressed as the sum of two squares in three different ways (425 = 202 + 52 = 192 + 82 = 162 + 132).

426Edit

426 = 2 × 3 × 71, sphenic number, nontotient, untouchable number

427Edit

427 = 7 × 61, Mertens function returns 0.<ref name=A028442/> 427! + 1 is prime.

428Edit

428 = 22 × 107, Mertens function returns 0, nontotient, 42832 + 1 is prime<ref>Template:Cite OEIS</ref>

429Edit

429 = 3 × 11 × 13, sphenic number, Catalan number<ref>Template:Cite OEIS</ref>

430sEdit

430Edit

430 = 2 × 5 × 43, number of primes below 3000, sphenic number, untouchable number<ref name=A005114/>

431Edit

A prime number, Sophie Germain prime,<ref name=A005384/> sum of seven consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73), Chen prime,<ref name=A109611/> prime index prime, Eisenstein prime with no imaginary part

432Edit

432 = 24 × 33 = 42 × 33, the sum of four consecutive primes (103 + 107 + 109 + 113), a Harshad number, a highly totient number,<ref name=A097942>Template:Cite OEIS</ref> an Achilles number and the sum of totient function for first 37 integers. 432! is the first factorial that is not a Harshad number in base 10. 432 is also three-dozen sets of a dozen, making it three gross. An equilateral triangle whose area and perimeter are equal, has an area (and perimeter) equal to <math>\sqrt{432}</math>.

433Edit

A prime number, Markov number,<ref>Template:Cite OEIS</ref> star number.<ref>Template:Cite OEIS</ref>

  • The perfect score in the game show Fifteen To One, only ever achieved once in over 2000 shows.
  • 433 can refer to composer John Cage's composition 4′33″ (pronounced "Four minutes, thirty-three seconds" or just "Four thirty-three").

434Edit

434 = 2 × 7 × 31, sphenic number, sum of six consecutive primes (61 + 67 + 71 + 73 + 79 + 83), nontotient, maximal number of pieces that can be obtained by cutting an annulus with 28 cuts<ref name=A000096>Template:Cite OEIS</ref>

435Edit

435 = 3 × 5 × 29, sphenic number, 29th triangular number,<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> hexagonal number,<ref>Template:Cite OEIS</ref> self number,<ref name=A003052/> number of compositions of 16 into distinct parts<ref>Template:Cite OEIS</ref>

436Edit

436 = 22 × 109, nontotient, noncototient, lazy caterer number <ref name=A000124/>

437Edit

437 = 19 × 23, Blum integer

438Edit

438 = 2 × 3 × 73, sphenic number, Smith number.<ref name=A006753>Template:Cite OEIS</ref>

439Edit

A prime number, sum of three consecutive primes (139 + 149 + 151), sum of nine consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67), strictly non-palindromic number<ref name=A016038>Template:Cite OEIS</ref>

440sEdit

440Edit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}}

441Edit

441 = 32 × 72 = 212

442Edit

442 = 2 × 13 × 17 = 212 + 1,<ref>Template:Cite OEIS</ref> sphenic number, sum of eight consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67 + 71)

443Edit

A prime number, Sophie Germain prime,<ref name=A005384/> Chen prime,<ref name=A109611/> Eisenstein prime with no imaginary part, Mertens function sets new low of -9, which stands until 659.

  • In computing, it is the default port for HTTPS connections.

444Edit

444 = 22 × 3 × 37, refactorable number,<ref name=A033950/> Harshad number, number of noniamonds without holes,<ref>Template:Cite OEIS</ref> and a repdigit.

445Edit

445 = 5 × 89, number of series-reduced trees with 17 nodes<ref>Template:Cite OEIS</ref>

446Edit

446 = 2 × 223, nontotient, self number<ref name=A003052/>

447Edit

447 = 3 × 149, number of 1's in all partitions of 22 into odd parts<ref>Template:Cite OEIS</ref>

448Edit

448 = 26 × 7, untouchable number,<ref name=A005114/> refactorable number,<ref name=A033950/> Harshad number

449Edit

A prime number, sum of five consecutive primes (79 + 83 + 89 + 97 + 101), Chen prime,<ref name=A109611/> Eisenstein prime with no imaginary part, Proth prime.<ref>Template:Cite OEIS</ref> Also the largest number whose factorial is less than 101000

450sEdit

450Edit

450 = 2 × 32 × 52, nontotient, sum of totient function for first 38 integers, refactorable number,<ref name=A033950/> Harshad number,

451Edit

451 = 11 × 41; 451 is a Wedderburn–Etherington number<ref>Template:Cite OEIS</ref> and a centered decagonal number;<ref>Template:Cite OEIS</ref> its reciprocal has period 10; 451 is the smallest number with this period reciprocal length.

  • The novel Fahrenheit 451 refers to the temperature in Fahrenheit that author Ray Bradbury understood to be the autoignition point of paper.
    • By extension, the numbers "451" are often included as the first security code a player encounters in Immersive sim video games as a reference to the System Shock series of games which first included the code as their own reference to Bradbury's novel.<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

|CitationClass=web }}</ref>

452Edit

452 = 22 × 113, number of surface-points of a tetrahedron with edge-length 15<ref>Template:Cite OEIS</ref>

  • SMTP code meaning that the requested mail action was not carried out because of insufficient system storage

453Edit

453 = 3 × 151, Blum integer

454Edit

454 = 2 × 227, nontotient, a Smith number<ref name=A006753/>

455Edit

455 = 5 × 7 × 13, sphenic number, tetrahedral number<ref>Template:Cite OEIS</ref>

456Edit

456 = 23 × 3 × 19, sum of a twin prime (227 + 229), sum of four consecutive primes (107 + 109 + 113 + 127), centered pentagonal number,<ref>Template:Cite OEIS</ref> icosahedral number

457Edit

  • A prime number, sum of three consecutive primes (149 + 151 + 157), self number.<ref name=A003052/>
  • The international standard frequency for radio avalanche transceivers (457 kHz).

458Edit

458 = 2 × 229, nontotient, number of partitions of 24 into divisors of 24<ref>Template:Cite OEIS</ref>

459Edit

459 = 33 × 17, triangular matchstick number<ref>Template:Cite OEIS</ref>

460sEdit

460Edit

460 = 22 × 5 × 23, centered triangular number,<ref name=A005448/> dodecagonal number,<ref>Template:Cite OEIS</ref> Harshad number, sum of twelve consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61)

461Edit

A prime number, Chen prime,<ref name=A109611/> sexy prime with 467, Eisenstein prime with no imaginary part, prime index prime

462Edit

462 = 2 × 3 × 7 × 11, binomial coefficient <math> \tbinom {11}5 </math>, stirling number of the second kind <math>\left\{ {9 \atop 7} \right\}</math>, sum of six consecutive primes (67 + 71 + 73 + 79 + 83 + 89), pronic number,<ref>Template:Cite OEIS</ref> sparsely totient number,<ref>Template:Cite OEIS</ref> idoneal number

463Edit

A prime number, sum of seven consecutive primes (53 + 59 + 61 + 67 + 71 + 73 + 79), centered heptagonal number.<ref>Template:Cite OEIS</ref> This number is the first of seven consecutive primes that are one less than a multiple of 4 (from 463 to 503).

464Edit

Template:See also 464 = 24 × 29, primitive abundant number,<ref>Template:Cite OEIS</ref> since 464 = 212 + 21 + 2 it is the maximum number of regions into which 22 intersecting circles divide the plane,<ref name=A014206/> maximal number of pieces that can be obtained by cutting an annulus with 29 cuts<ref name=A000096/>

  • In chess it is the number of legal positions of the kings, not counting mirrored positions. Has some importance when constructing an endgame tablebase.
  • Model number of the home computer Amstrad CPC 464.

465Edit

465 = 3 × 5 × 31, sphenic number, 30th triangular number,<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> member of the Padovan sequence,<ref>Template:Cite OEIS</ref> Harshad number

466Edit

466 = 2 × 233, noncototient, lazy caterer number.<ref name=A000124/>

467Edit

A prime number, safe prime,<ref name=A005385>Template:Cite OEIS</ref> sexy prime with 461, Chen prime,<ref name=A109611/> Eisenstein prime with no imaginary part

<math>\sum_{n=0}^{10}{467}^{n}</math> is prime<ref name=A162862/>

468Edit

468 = 22 × 32 × 13, sum of ten consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67), refactorable number,<ref name=A033950/> self number,<ref name=A003052/> Harshad number

469Edit

469 = 7 × 67, centered hexagonal number.<ref>Template:Cite OEIS</ref> 469! - 1 is prime.

470sEdit

470Edit

470 = 2 × 5 × 47, sphenic number, nontotient, noncototient, cake number

  • In golf, 470 is the minimum length in yards from the tee to the hole on a Par 5.
  • 470 is an Olympic class of sailing dinghy

471Edit

471 = 3 × 157, sum of three consecutive primes (151 + 157 + 163), perfect totient number,<ref>Template:Cite OEIS</ref> φ(471) = φ(σ(471)).<ref name=A006872>Template:Cite OEIS</ref>

472Edit

472 = 23 × 59, nontotient, untouchable number,<ref name=A005114/> refactorable number,<ref name=A033950/> number of distinct ways to cut a 5 × 5 square into squares with integer sides<ref>Template:Cite OEIS</ref>

  • The Amstrad CPC472 was a short-lived home computer for the Spanish market.

473Edit

473 = 11 × 43, sum of five consecutive primes (83 + 89 + 97 + 101 + 103), Blum integer

474Edit

474 = 2 × 3 × 79, sphenic number, sum of eight consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73), nontotient, noncototient, sum of totient function for first 39 integers, untouchable number,<ref name=A005114/> nonagonal number<ref>Template:Cite OEIS</ref>

475Edit

475 = 52 × 19, 49-gonal number, member of the Mian–Chowla sequence.<ref name=A005282/>

476Edit

476 = 22 × 7 × 17, Harshad number, admirable number<ref>Template:Cite OEIS</ref>

477Edit

477 = 32 × 53, pentagonal number<ref name=A000326/>

478Edit

478 = 2 × 239, Companion Pell number, number of partitions of 26 that do not contain 1 as a part<ref>Template:Cite OEIS</ref>

479Edit

A prime number, safe prime,<ref name=A005385/> sum of nine consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71), Chen prime,<ref name=A109611/> Eisenstein prime with no imaginary part, self number<ref name=A003052/>

480sEdit

480Edit

480 = 25 × 3 × 5, sum of a twin prime (239 + 241), sum of four consecutive primes (109 + 113 + 127 + 131), highly totient number,<ref name=A097942/> refactorable number,<ref name=A033950/> Harshad number, largely composite number<ref name="OEIS-A067128">Template:Cite OEIS</ref>

<math>\sum_{n=0}^{10}{480}^{n}</math> is prime<ref name=A162862/>

481Edit

481 = 13 × 37, octagonal number,<ref name=A000567/> centered square number,<ref name=A001844/> Harshad number

482Edit

482 = 2 × 241, nontotient, noncototient, number of series-reduced planted trees with 15 nodes<ref>Template:Cite OEIS</ref>

483Edit

483 = 3 × 7 × 23, sphenic number, Smith number<ref name=A006753/>

484Edit

484 = 22 × 112 = 222, palindromic square, nontotient

485Edit

485 = 5 × 97, number of triangles (of all sizes, including holes) in Sierpiński's triangle after 5 inscriptions<ref>Template:Cite OEIS</ref>

486Edit

486 = 2 × 35, Harshad number, Perrin number<ref>Template:Cite OEIS</ref>

487Edit

A prime number, sum of three consecutive primes (157 + 163 + 167), Chen prime,<ref name=A109611/>

488Edit

488 = 23 × 61, nontotient, refactorable number,<ref name=A033950/> φ(488) = φ(σ(488)),<ref name=A006872/> number of surface points on a cube with edge-length 10.<ref>Template:Cite OEIS</ref>

489Edit

489 = 3 × 163, octahedral number<ref>Template:Cite OEIS</ref>

490sEdit

490Edit

490 = 2 × 5 × 72, noncototient, sum of totient function for first 40 integers, number of integer partitions of 19,<ref>Template:Cite OEIS</ref> self number.<ref name=A003052/>

491Edit

A prime number, isolated prime, Sophie Germain prime,<ref name=A005384/> Chen prime,<ref name=A109611/> Eisenstein prime with no imaginary part, strictly non-palindromic number<ref name=A016038/>

492Edit

492 = 22 × 3 × 41, sum of six consecutive primes (71 + 73 + 79 + 83 + 89 + 97), refactorable number,<ref name=A033950/> member of a Ruth–Aaron pair with 493 under first definition

493Edit

493 = 17 × 29, sum of seven consecutive primes (59 + 61 + 67 + 71 + 73 + 79 + 83), member of a Ruth–Aaron pair with 492 under first definition, the 493d centered octagonal number is also a centered square number<ref>Template:Cite OEIS</ref>

494Edit

494 = 2 × 13 × 19 = <math> \left\langle \!\! \left\langle {8 \atop 1} \right\rangle \!\! \right\rangle</math>,<ref>Template:Cite OEIS</ref> sphenic number, nontotient

495Edit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}}

496Edit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}}

497Edit

497 = 7 × 71, sum of five consecutive primes (89 + 97 + 101 + 103 + 107), lazy caterer number.<ref name=A000124/>

498Edit

498 = 2 × 3 × 83, sphenic number, untouchable number,<ref name=A005114/> admirable number,<ref>Template:Cite OEIS</ref> abundant number

499Edit

A prime number, isolated prime, Chen prime,<ref name=A109611/> 4499 - 3499 is prime

ReferencesEdit

Template:Reflist

Template:Integers Template:Authority control