Template:Short description Template:About

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

<math> \Beta(z_1,z_2) = \int_0^1 t^{z_1-1}(1-t)^{z_2-1}\,dt</math>

for complex number inputs <math> z_1, z_2 </math> such that <math> \operatorname{Re}(z_1), \operatorname{Re}(z_2)>0</math>.

The beta function was studied by Leonhard Euler and Adrien-Marie Legendre and was given its name by Jacques Binet; its symbol Template:Math is a Greek capital beta.

PropertiesEdit

The beta function is symmetric, meaning that <math> \Beta(z_1,z_2) = \Beta(z_2,z_1)</math> for all inputs <math>z_1</math> and <math>z_2</math>.<ref name=Davis622>Template:Citation. Specifically, see 6.2 Beta Function.</ref>

A key property of the beta function is its close relationship to the gamma function:<ref name=Davis622/>

<math> \Beta(z_1,z_2)=\frac{\Gamma(z_1)\,\Gamma(z_2)}{\Gamma(z_1+z_2)}</math>

A proof is given below in Template:Slink.

The beta function is also closely related to binomial coefficients. When Template:Mvar (or Template:Mvar, by symmetry) is a positive integer, it follows from the definition of the gamma function Template:Math that<ref name=Davis622/>

<math> \Beta(m,n) =\frac{(m-1)!\,(n-1)!}{(m+n-1)!} = \frac{m + n}{mn} \Bigg/ \binom{m + n}{m} </math>

Relationship to the gamma functionEdit

To derive this relation, write the product of two factorials as integrals. Since they are integrals in two separate variables, we can combine them into an iterated integral:

<math>\begin{align}
\Gamma(z_1)\Gamma(z_2) &= \int_{u=0}^\infty\ e^{-u} u^{z_1-1}\,du \cdot\int_{v=0}^\infty\ e^{-v} v^{z_2-1}\,dv \\[6pt]
&=\int_{v=0}^\infty\int_{u=0}^\infty\ e^{-u-v} u^{z_1-1}v^{z_2-1}\, du \,dv.

\end{align}</math>

Changing variables by Template:Math and Template:Math, because Template:Math and Template:Math, we have that the limits of integrations for Template:Math are 0 to ∞ and the limits of integration for Template:Math are 0 to 1. Thus produces

<math>\begin{align}

\Gamma(z_1)\Gamma(z_2) &= \int_{s=0}^\infty\int_{t=0}^1 e^{-s} (st)^{z_1-1}(s(1-t))^{z_2-1}s\,dt \,ds \\[6pt]

&= \int_{s=0}^\infty e^{-s}s^{z_1+z_2-1} \,ds\cdot\int_{t=0}^1 t^{z_1-1}(1-t)^{z_2-1}\,dt\\
&=\Gamma(z_1+z_2) \cdot \Beta(z_1,z_2).

\end{align}</math>

Dividing both sides by <math>\Gamma(z_1+z_2)</math> gives the desired result.

The stated identity may be seen as a particular case of the identity for the integral of a convolution. Taking

<math>\begin{align}f(u)&:=e^{-u} u^{z_1-1} 1_{\R_+} \\ g(u)&:=e^{-u} u^{z_2-1} 1_{\R_+}, \end{align}</math>

one has:

<math> \Gamma(z_1) \Gamma(z_2) = \int_{\R}f(u)\,du\cdot \int_{\R} g(u) \,du = \int_{\R}(f*g)(u)\,du =\Beta(z_1,z_2)\,\Gamma(z_1+z_2).</math>

See The Gamma Function, page 18–19<ref>Template:Citation</ref> for a derivation of this relation.

Differentiation of the beta functionEdit

We have

<math>\frac{\partial}{\partial z_1} \mathrm{B}(z_1, z_2) = \mathrm{B}(z_1, z_2) \left( \frac{\Gamma'(z_1)}{\Gamma(z_1)} - \frac{\Gamma'(z_1 + z_2)}{\Gamma(z_1 + z_2)} \right) = \mathrm{B}(z_1, z_2) \big(\psi(z_1) - \psi(z_1 + z_2)\big),</math>
<math>\frac{\partial}{\partial z_m} \mathrm{B}(z_1, z_2, \dots, z_n) = \mathrm{B}(z_1, z_2, \dots, z_n) \left(\psi(z_m) - \psi\left( \sum_{k=1}^n z_k \right)\right), \quad 1\le m\le n,</math>

where <math>\psi(z)</math> denotes the digamma function.

ApproximationEdit

Stirling's approximation gives the asymptotic formula

<math>\Beta(x,y) \sim \sqrt {2\pi } \frac{x^{x - 1/2} y^{y - 1/2} }{( {x + y} )^{x + y - 1/2} }</math>

for large Template:Mvar and large Template:Mvar.

If on the other hand Template:Mvar is large and Template:Mvar is fixed, then

<math>\Beta(x,y) \sim \Gamma(y)\,x^{-y}.</math>

Other identities and formulasEdit

The integral defining the beta function may be rewritten in a variety of ways, including the following:

<math>

\begin{align} \Beta(z_1,z_2) &= 2\int_0^{\pi / 2}(\sin\theta)^{2z_1-1}(\cos\theta)^{2z_2-1}\,d\theta, \\[6pt]

   &= \int_0^\infty\frac{t^{z_1-1}}{(1+t)^{z_1+z_2}}\,dt, \\[6pt]
   &= n\int_0^1t^{nz_1-1}(1-t^n)^{z_2-1}\,dt, \\
   &= (1-a)^{z_2} \int_0^1 \frac{(1-t)^{z_1-1}t^{z_2-1}}{(1-at)^{z_1+z_2}}dt \qquad \text{for any } a\in\mathbb{R}_{\leq 1},

\end{align}</math>

where in the second-to-last identity Template:Mvar is any positive real number. One may move from the first integral to the second one by substituting <math>t = \tan^2(\theta)</math>.

For values <math>z=z_1=z_2\neq1</math> we have:

<math>

\Beta(z,z) = \frac{1}{z}\int_0^{\pi / 2}\frac{1}{(\sqrt[z]{\sin\theta} + \sqrt[z]{\cos\theta})^{2z}}\,d\theta </math>

The beta function can be written as an infinite sum<ref>Template:Citation</ref>

<math>\Beta(x,y) = \sum_{n=0}^\infty \frac{(1-x)_n}{(y+n)\,n!}</math>

If <math>x</math> and <math>y</math> are equal to a number <math>z</math> we get:

<math>

\Beta(z,z) = 2\sum_{n=0}^\infty \frac{(2z+n-1)_n (-1)^n}{(z+n)n!} = \lim_{x \to 1^-}2\sum_{n=0}^\infty \frac{(-2z)_n x^n}{(z+n)n!} </math>

(where <math>(x)_n</math> is the rising factorial)

and as an infinite product

<math>\Beta(x,y) = \frac{x+y}{x y} \prod_{n=1}^\infty \left( 1+ \dfrac{x y}{n (x+y+n)}\right)^{-1}.</math>

The beta function satisfies several identities analogous to corresponding identities for binomial coefficients, including a version of Pascal's identity

<math> \Beta(x,y) = \Beta(x, y+1) + \Beta(x+1, y)</math>

and a simple recurrence on one coordinate:

<math>\Beta(x+1,y) = \Beta(x, y) \cdot \dfrac{x}{x+y}, \quad \Beta(x,y+1) = \Beta(x, y) \cdot \dfrac{y}{x+y}.</math><ref>Template:Citation</ref>

The positive integer values of the beta function are also the partial derivatives of a 2D function: for all nonnegative integers <math>m</math> and <math>n</math>,

<math>\Beta(m+1, n+1) = \frac{\partial^{m+n}h}{\partial a^m \, \partial b^n}(0, 0),</math>

where

<math>h(a, b) = \frac{e^a-e^b}{a-b}.</math>

The Pascal-like identity above implies that this function is a solution to the first-order partial differential equation

<math>h = h_a+h_b.</math>

For <math>x, y \geq 1</math>, the beta function may be written in terms of a convolution involving the truncated power function <math>t \mapsto t_+^x</math>:

<math> \Beta(x,y) \cdot\left(t \mapsto t_+^{x+y-1}\right) = \Big(t \mapsto t_+^{x-1}\Big) * \Big(t \mapsto t_+^{y-1}\Big)</math>

Evaluations at particular points may simplify significantly; for example,

<math> \Beta(1,x) = \dfrac{1}{x} </math>

and

<math> \Beta(x,1-x) = \dfrac{\pi}{\sin(\pi x)}, \qquad x \not \in \mathbb{Z} </math><ref>Template:Citation</ref>

By taking <math> x = \frac{1}{2}</math> in this last formula, it follows that <math>\Gamma(1/2) = \sqrt{\pi}</math>. Generalizing this into a bivariate identity for a product of beta functions leads to:

<math> \Beta(x,y) \cdot \Beta(x+y,1-y) = \frac{\pi}{x \sin(\pi y)} .</math>

Euler's integral for the beta function may be converted into an integral over the Pochhammer contour Template:Mvar as

<math>\left(1-e^{2\pi i\alpha}\right)\left(1-e^{2\pi i\beta}\right)\Beta(\alpha,\beta) =\int_C t^{\alpha-1}(1-t)^{\beta-1} \, dt.</math>

This Pochhammer contour integral converges for all values of Template:Mvar and Template:Mvar and so gives the analytic continuation of the beta function.

Just as the gamma function for integers describes factorials, the beta function can define a binomial coefficient after adjusting indices:

<math>\binom{n}{k} = \frac{1}{(n+1)\,\Beta(n-k+1, k+1)}.</math>

Moreover, for integer Template:Mvar, Template:Math can be factored to give a closed form interpolation function for continuous values of Template:Mvar:

<math>\binom{n}{k} = (-1)^n\, n! \cdot\frac{\sin (\pi k)}{\pi \displaystyle\prod_{i=0}^n (k-i)}.</math>

Reciprocal beta functionEdit

The reciprocal beta function is the function about the form

<math>f(x,y)=\frac{1}{\Beta(x,y)}</math>

Interestingly, their integral representations closely relate as the definite integral of trigonometric functions with product of its power and multiple-angle:<ref>Template:Dlmf</ref>

<math>\int_0^\pi\sin^{x-1}\theta\sin y\theta~d\theta=\frac{\pi\sin\frac{y\pi}{2}}{2^{x-1}x\Beta\left(\frac{x+y+1}{2},\frac{x-y+1}{2}\right)}</math>
<math>\int_0^\pi\sin^{x-1}\theta\cos y\theta~d\theta=\frac{\pi\cos\frac{y\pi}{2}}{2^{x-1}x\Beta\left(\frac{x+y+1}{2},\frac{x-y+1}{2}\right)}</math>
<math>\int_0^\pi\cos^{x-1}\theta\sin y\theta~d\theta=\frac{\pi\cos\frac{y\pi}{2}}{2^{x-1}x\Beta\left(\frac{x+y+1}{2},\frac{x-y+1}{2}\right)}</math>
<math>\int_0^\frac{\pi}{2}\cos^{x-1}\theta\cos y\theta~d\theta=\frac{\pi}{2^xx\Beta\left(\frac{x+y+1}{2},\frac{x-y+1}{2}\right)}</math>

Incomplete beta functionEdit

The incomplete beta function, a generalization of the beta function, is defined as<ref>Template:Citation</ref><ref name="paris-ibf">Template:Dlmf</ref>

<math> \Beta(x;\,a,b) = \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt. </math>

For Template:Math, the incomplete beta function coincides with the complete beta function. For positive integers a and b, the incomplete beta function will be a polynomial of degree a + b - 1 with rational coefficients.

By the substitution <math>t = \sin^2\theta</math> and <math>t = \frac1{1+s}</math>, we can show that

<math>\Beta(x;\,a,b) = 2 \int_0^{\arcsin \sqrt x} \sin^{2a-1\!}\theta\cos^{2b-1\!}\theta\,\mathrm d\theta = \int_{\frac{1-x}x}^\infty \frac{s^{b-1}}{(1+s)^{a+b}}\,\mathrm ds</math>

The regularized incomplete beta function (or regularized beta function for short) is defined in terms of the incomplete beta function and the complete beta function:

<math> I_x(a,b) = \frac{\Beta(x;\,a,b)}{\Beta(a,b)}. </math>

The regularized incomplete beta function is the cumulative distribution function of the beta distribution, and is related to the cumulative distribution function <math>F(k;\,n,p)</math> of a random variable Template:Mvar following a binomial distribution with probability of single success Template:Mvar and number of Bernoulli trials Template:Mvar:

<math>F(k;\,n,p) = \Pr\left(X \le k\right) = I_{1-p}(n-k, k+1) = 1 - I_p(k+1,n-k). </math>

PropertiesEdit

<math>\begin{align}

I_0(a,b) &= 0 \\ I_1(a,b) &= 1 \\ I_x(a,1) &= x^a\\ I_x(1,b) &= 1 - (1-x)^b \\ I_x(a,b) &= 1 - I_{1-x}(b,a) \\ I_x(a+1,b) &= I_x(a,b)-\frac{x^a(1-x)^b}{a \Beta(a,b)} \\ I_x(a,b+1) &= I_x(a,b)+\frac{x^a(1-x)^b}{b \Beta(a,b)} \\ \int \Beta(x;a,b) \mathrm{d}x &= x \Beta(x; a, b) - \Beta(x; a+1, b) \\ \Beta(x;a,b)&=(-1)^{a} \Beta\left(\frac{x}{x-1};a,1-a-b\right) \end{align}</math>

Continued fraction expansionEdit

The continued fraction expansion

<math>\Beta(x;\,a,b) = \frac{x^{a} (1 - x)^{b}}{a \left( 1 + \frac{{d}_{1}}{1 +} \frac{{d}_{2}}{1 +} \frac{{d}_{3}}{1 +} \frac{{d}_{4}}{1 +} \cdots \right)}</math>

with odd and even coefficients respectively

<math>{d}_{2 m + 1} = - \frac{(a + m) (a + b + m) x}{(a + 2 m) (a + 2 m + 1)}</math>
<math>{d}_{2 m} = \frac{m (b - m) x}{(a + 2 m - 1) (a + 2 m)}</math>

converges rapidly when <math>x</math> is not close to 1. The <math>4 m</math> and <math>4 m + 1</math> convergents are less than <math>\Beta(x;\,a,b)</math>, while the <math>4 m + 2</math> and <math>4 m + 3</math> convergents are greater than <math>\Beta(x;\,a,b)</math>.

For <math>x > \frac{a + 1}{a + b + 2}</math>, the function may be evaluated more efficiently using <math>\Beta(x;\,a,b) = \Beta(a, b) - \Beta(1 - x;\,b,a)</math>.<ref name="paris-ibf"/>

Multivariate beta functionEdit

The beta function can be extended to a function with more than two arguments:

<math>\Beta(\alpha_1,\alpha_2,\ldots\alpha_n) = \frac{\Gamma(\alpha_1)\,\Gamma(\alpha_2) \cdots \Gamma(\alpha_n)}{\Gamma(\alpha_1 + \alpha_2 + \cdots + \alpha_n)} .</math>

This multivariate beta function is used in the definition of the Dirichlet distribution. Its relationship to the beta function is analogous to the relationship between multinomial coefficients and binomial coefficients. For example, it satisfies a similar version of Pascal's identity:

<math>\Beta(\alpha_1,\alpha_2,\ldots\alpha_n) = \Beta(\alpha_1+1,\alpha_2,\ldots\alpha_n)+\Beta(\alpha_1,\alpha_2+1,\ldots\alpha_n)+\cdots+\Beta(\alpha_1,\alpha_2,\ldots\alpha_n+1) .</math>

ApplicationsEdit

The beta function is useful in computing and representing the scattering amplitude for Regge trajectories. Furthermore, it was the first known scattering amplitude in string theory, first conjectured by Gabriele Veneziano. It also occurs in the theory of the preferential attachment process, a type of stochastic urn process. The beta function is also important in statistics, e.g. for the beta distribution and beta prime distribution. As briefly alluded to previously, the beta function is closely tied with the gamma function and plays an important role in calculus.

Software implementationEdit

Even if unavailable directly, the complete and incomplete beta function values can be calculated using functions commonly included in spreadsheet or computer algebra systems.

In Microsoft Excel, for example, the complete beta function can be computed with the GammaLn function (or special.gammaln in Python's SciPy package):

Value = Exp(GammaLn(a) + GammaLn(b) − GammaLn(a + b))

This result follows from the properties listed above.

The incomplete beta function cannot be directly computed using such relations and other methods must be used. In GNU Octave, it is computed using a continued fraction expansion.

The incomplete beta function has existing implementation in common languages. For instance, betainc (incomplete beta function) in MATLAB and GNU Octave, pbeta (probability of beta distribution) in R and betainc in SymPy. In SciPy, special.betainc computes the regularized incomplete beta function—which is, in fact, the cumulative beta distribution. To get the actual incomplete beta function, one can multiply the result of special.betainc by the result returned by the corresponding beta function. In Mathematica, Beta[x, a, b] and BetaRegularized[x, a, b] give <math> \Beta(x;\,a,b) </math> and <math> I_x(a,b) </math>, respectively.

See alsoEdit

Template:More footnotes

ReferencesEdit

Template:Reflist

External linksEdit

Template:Authority control