Multiplicative order
Template:Short description In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that <math display="inline">a^k\ \equiv\ 1 \pmod n</math>.<ref>Template:Harnvb</ref>
In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.
The order of a modulo n is sometimes written as <math>\operatorname{ord}_n(a)</math>.<ref> Template:Cite book</ref>
ExampleEdit
The powers of 4 modulo 7 are as follows:
- <math>\begin{array}{llll}
4^0 &= 1 &=0 \times 7 + 1 &\equiv 1\pmod7 \\ 4^1 &= 4 &=0 \times 7 + 4 &\equiv 4\pmod7 \\ 4^2 &= 16 &=2 \times 7 + 2 &\equiv 2\pmod7 \\ 4^3 &= 64 &=9 \times 7 + 1 &\equiv 1\pmod7 \\ 4^4 &= 256 &=36 \times 7 + 4 &\equiv 4\pmod7 \\ 4^5 &= 1024 &=146 \times 7 + 2 &\equiv 2\pmod7 \\ \vdots\end{array}</math>
The smallest positive integer k such that 4k ≡ 1 (mod 7) is 3, so the order of 4 (mod 7) is 3.
PropertiesEdit
Even without knowledge that we are working in the multiplicative group of integers modulo n, we can show that a actually has an order by noting that the powers of a can only take a finite number of different values modulo n, so according to the pigeonhole principle there must be two powers, say s and t and without loss of generality s > t, such that as ≡ at (mod n). Since a and n are coprime, a has an inverse element a−1 and we can multiply both sides of the congruence with a−t, yielding as−t ≡ 1 (mod n).
The concept of multiplicative order is a special case of the order of group elements. The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Zn; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or U(Zn).
As a consequence of Lagrange's theorem, the order of a (mod n) always divides φ(n). If the order of a is actually equal to φ(n), and therefore as large as possible, then a is called a primitive root modulo n. This means that the group U(n) is cyclic and the residue class of a generates it.
The order of a (mod n) also divides λ(n), a value of the Carmichael function, which is an even stronger statement than the divisibility of φ(n).
Programming languagesEdit
- Maxima CAS : zn_order (a, n)<ref>Maxima 5.42.0 Manual: zn_order</ref>
- Wolfram Language : MultiplicativeOrder[k, n]<ref>Wolfram Language documentation</ref>
- Rosetta Code - examples of multiplicative order in various languages<ref>rosettacode.org - examples of multiplicative order in various languages</ref>
See alsoEdit
ReferencesEdit
External linksEdit
- {{#invoke:Template wrapper|{{#if:|list|wrap}}|_template=cite web
|_exclude=urlname, _debug, id |url = https://mathworld.wolfram.com/{{#if:MultiplicativeOrder%7CMultiplicativeOrder.html}} |title = Multiplicative Order |author = Weisstein, Eric W. |website = MathWorld |access-date = |ref = Template:SfnRef }}