Sprat
Template:Short description Template:About Template:Use dmy dates
Sprat is the common name applied to a group of forage fish belonging to the genus Sprattus in the family Clupeidae. The term also is applied to a number of other small sprat-like forage fish (Clupeoides, Clupeonella, Corica, Ehirava, Hyperlophus, Microthrissa, Nannothrissa, Platanichthys, Ramnogaster, Rhinosardinia, and Stolothrissa). Like most forage fishes, sprats are highly active, small, oily fish. They travel in large schools with other fish and swim continuously throughout the day.<ref name="Meskendahl2010">Meskendahl, L., J.-P. Herrmann, and A. Temming. "Effects of Temperature and Body Mass on Metabolic Rates of Sprat, Sprattus Sprattus L." Marine Biology 157.9 (2010): 1917–1927. Academic Search Premier. Web. 26 November 2011. p. 1925 [1]</ref>
They are recognized for their nutritional value, as they contain high levels of polyunsaturated fats, considered beneficial to the human diet. They are eaten in many places around the world.<ref>Sprats Fried in Batter</ref> Sprats are sometimes passed off as other fish; products sold as having been prepared from anchovies (since the 19th century) and others sold as sardines sometimes are prepared from sprats, as the authentic ones once were less accessible. They are known for their smooth flavour and are easy to mistake for baby sardines.
SpeciesEdit
True spratsEdit
True sprats belong to the genus Sprattus in the family Clupeidae. The five species are:
Sprattus species | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Common name | Scientific name | Maximum length |
Common length |
Maximum weight |
Maximum age |
Trophic level |
Fish Base |
FAO | ITIS | IUCN status | |||||
New Zealand blueback sprat | Sprattus antipodum (Hector 1872) | 12.0 cm | 9.0 cm | 3.0 | <ref>{{#invoke:Cite taxon|main|fishbase|genus=|species=|subspecies=}}</ref> | <ref>{{#if:161794 | wrap|_template=cite web|_exclude=id,ID,taxon | url = https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=161794 | title = Sprattus antipodum | publisher = Integrated Taxonomic Information System
}} |
Template:Citation error
}}</ref> |
LC IUCN 3 1.svg Least concern<ref>Template:Cite iucn</ref> | |||
Falkland sprat | Sprattus fuegensis (Blomefield, 1842) | 18.0 cm | 15.0 cm | 3.4 | <ref>{{#invoke:Cite taxon|main|fishbase|genus=|species=|subspecies=}}</ref> | <ref>{{#if:551216 | wrap|_template=cite web|_exclude=id,ID,taxon | url = https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=551216 | title = Sprattus fuegensis | publisher = Integrated Taxonomic Information System
}} |
Template:Citation error
}}</ref> |
LC IUCN 3 1.svg Least concern<ref>Template:Cite iucn</ref> | |||
New Zealand sprat | Sprattus muelleri (Klunzinger, 1879) | 13.0 cm | 10.0 cm | 3.0 | <ref>{{#invoke:Cite taxon|main|fishbase|genus=|species=|subspecies=}}</ref> | <ref>{{#if:551217 | wrap|_template=cite web|_exclude=id,ID,taxon | url = https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=551217 | title = Sprattus muelleri | publisher = Integrated Taxonomic Information System
}} |
Template:Citation error
}}</ref> |
LC IUCN 3 1.svg Least concern<ref>Template:Cite iucn</ref> | |||
Australian sprat | Sprattus novaehollandiae (Valenciennes, 1847) | 14.0 cm | 3.0 | <ref>{{#invoke:Cite taxon|main|fishbase|genus=|species=|subspecies=}}</ref> | <ref>{{#if:551218 | wrap|_template=cite web|_exclude=id,ID,taxon | url = https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=551218 | title = Sprattus novaehollandiae | publisher = Integrated Taxonomic Information System
}} |
Template:Citation error
}}</ref> |
LC IUCN 3 1.svg Least concern<ref>Template:Cite iucn</ref> | ||||
European sprat* | Sprattus sprattus (Linnaeus, 1758) | 16.0 cm | 12.0 cm | 6 years | 3.0 | <ref>{{#invoke:Cite taxon|main|fishbase|genus=|species=|subspecies=}}</ref> | <ref>Sprattus sprattus (Linnaeus, 1758) FAO, Species Fact Sheet. Retrieved April 2012.</ref> | <ref>{{#if:161789 | wrap|_template=cite web|_exclude=id,ID,taxon | url = https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=161789 | title = Sprattus sprattus | publisher = Integrated Taxonomic Information System
}} |
Template:Citation error
}}</ref> |
LC IUCN 3 1.svg Least concern<ref>Template:Cite iucn</ref> |
* Type species
Other spratsEdit
The term also is commonly applied to a number of other small sprat-like forage fish that share characteristics of the true sprat. Apart from the true sprats, FishBase lists another 48 species whose common names ends with "sprat". Some examples are:
Sprat-like species | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Common name | Scientific name | Maximum length |
Common length |
Maximum weight |
Maximum age |
Trophic level |
Fish Base |
FAO | ITIS | IUCN status | |||||
Black Sea sprat | Clupeonella cultriventris (Nordmann, 1840) | 14.5 cm | 10 cm | 5 years | 3.0 | <ref>{{#invoke:Cite taxon|main|fishbase|genus=|species=|subspecies=}}</ref> | <ref>Clupeonella cultriventris (Nordmann, 1840) FAO, Species Fact Sheet. Retrieved April 2012.</ref> | <ref>{{#if:161819 | wrap|_template=cite web|_exclude=id,ID,taxon | url = https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=161819 | title = Clupeonella cultriventris | publisher = Integrated Taxonomic Information System
}} |
Template:Citation error
}}</ref> |
LC IUCN 3 1.svg Least concern<ref>Template:Cite iucn</ref> |
CharacteristicsEdit
The average length of time from fertilization to hatching is about 15 days, with environmental factors playing a major role in the size and overall success of the sprat.<ref name="Nissling2004">Nissling, Anders. "Effects of Temperature on Egg And Larval Survival of Cod (Gadus Morhua) And Sprat (Sprattus Sprattus) In The Baltic Sea – Implications For Stock Development." Hydrobiologia 514.1-3 (2004): 115–123. Academic Search Premier. Web. 24 November 2011. p. 121 [2]Template:Dead link</ref> The development of young larval sprat and reproductive success of the sprat have been largely influenced by environmental factors. Some of these factors affecting the sprat can be seen in the Baltic Sea, where specific gravity, water temperature, depth, and other such factors play a role in their success.
In recent decades the number of sprat has fluctuated, due primarily to availability of zooplankton, a common food source, and also from overall changes in Clupeidae total abundance.<ref name=Casini2004 /> Although the overall survival rates of the sprat decreased in the late 1980s and early 1990s, there has been a subsequent increase.<ref name=Casini2004 /> Recent studies suggesting a progression in the reproductive success of the sprat acknowledge that a significant increase in spawning stock biomass occurred.<ref name=Koster2001 /> One of the main concerns for reproductive success for the sprat include exceedingly cold winters, as cold temperatures, especially in the Baltic Sea, have been known to affect the development of sprat eggs and larvae.<ref name=Nissling2004 />
The metabolic rate of the sprat is highly influenced by environmental factors such as water temperature.<ref name=Meskendahl2010 /> Several related fish, such as the Atlantic herring (C. harengus), have much lower metabolic rates than that of the sprat. Some of the difference may be due to size differences among the related species,<ref name=Meskendahl2010 /> but the most important reason for high levels of metabolism for the sprat is their exceedingly high level of activity throughout the day.<ref name=Meskendahl2010 />
DistributionEdit
Fish of the different species of sprat are found in various parts of the world including New Zealand, Australia, and parts of Europe. By far, the most highly studied location where sprat, most commonly Sprattus sprattus, reside is the Baltic Sea in Northern Europe. The Baltic Sea provides the sprat with a highly diverse environment, with spatial and temporal potential allowing for successful reproduction.<ref name="Koster2001">Friedrich W. Köster, et al. "Developing Baltic Cod Recruitment Models. I. Resolving Spatial And Temporal Dynamics of Spawning Stock And Recruitment For Cod, Herring, And Sprat." Canadian Journal of Fisheries & Aquatic Sciences 58.8 (2001): 1516. Academic Search Premier. Web. 21 November 2011. p. 1516. [3]Template:Dead link</ref>
One of the most well-known locations in the Baltic Sea where they forage for their food is the Bornholm Basin, in the southern portion of the Baltic Sea.<ref name="Casini2004">Casini, Michele, Cardinale, Massimiliano, and Arrheni, Fredrik. "Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea". ICES Journal of Marine Science, 61 (2004): 1267–1277. Science Direct. Web. 22 November 2011. p. 1268. [4]</ref> Although the Baltic Sea has undergone several ecological changes during the last two decades, the sprat has dramatically increased in population.<ref name="Casini2006">Casini, Michele, Massimiliano Cardinale, and Joakim Hjelm. "Inter-Annual Variation in Herring, Clupea Harengus, And Sprat, Sprattus Sprattus, Condition in the Central Baltic Sea: What Gives The Tune?." Oikos 112.3 (2006): 638–650. Academic Search Premier. Web. 22 November 2011. p. 638. [5]</ref> One of the environmental changes that has occurred in the Baltic Sea since the 1980s includes a decrease in water salinity, due to a lack of inflow from the North Sea that contains high saline and oxygen content.<ref name=Casini2006 />
EcologyEdit
In the Baltic Sea, cod, herring, and sprat are considered the most important species.<ref name=Koster2001 /> Cod is the top predator, while the herring and sprat primarily are recognized as prey.<ref>Maris Plikshs, et al. "Developing Baltic Cod Recruitment Models. I. Resolving Spatial And Temporal Dynamics of Spawning Stock And Recruitment For Cod, Herring, And Sprat." Canadian Journal of Fisheries & Aquatic Sciences 58.8 (2001): 1516. Academic Search Premier. Web. 23 Nov. 2011, p.1517 [6]Template:Dead linkTemplate:Cbignore</ref> This has been proven by many studies that analyze the stomach contents of such fish, often finding contents that immediately signify predation among the species.<ref name=Koster2001 /> Although cod primarily feed on adult sprat, sprat tend to feed on cod before the cod have been fully developed. The sprat tends to prey on the cod eggs and larvae.<ref name=Nissling2004 /> Furthermore, sprat and herring are considered highly competitive for the same resources that are available to them. This is most present in the vertical migration of the two species in the Baltic Sea, where they compete for the limited zooplankton that is available and necessary for their survival.<ref name=Casini2004 />
Sprats are highly selective in their diet and are strict zooplanktivores that do not change their diet as their size increases, like some herring, but include only zooplankton in their diet.<ref name=Casini2004 /> They eat various species of zooplankton in accordance to changes in the environment, as temperature and other such factors affect the availability of their food.
During autumn, sprats tend to have a diet high in Temora longicornis and Bosmina maritime. During the winter, their diet includes Pesudocalanus elongates.<ref name=Casini2004 /> Pseudocalanus is genus of the order Calanoida and subclass Copepoda that is important to the predation and diet of fish in the Baltic Sea.<ref>Renz, Jasmin, Peters, Janna, Hirch, Hans-Jürgen. "Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda,Calanoida) in the Central Baltic Sea: II. Reproduction, growth and secondary production." Marine Biology, 151 (2007):515-527. Springer Link. Web. 4 December 2011. p. 515 [7]</ref>
In both autumn and winter, a tendency exists for sprats to avoid eating Acartia spp., because they tend to be very small in size and have a high escape response to predators such as the herring and sprat. Although Acartia spp. may be present in large numbers, they also tend to dwell more toward the surface of the water, whereas the sprats, especially during the day, tend to dwell in deeper waters.<ref name=Casini2004 />
FisheriesEdit
- Time series for global capture of all sprats 2.png
Global commercial capture of sprats in million tonnes 1950–2010<ref name=FAOdata>Based on data sourced from the relevant FAO Species Fact Sheets</ref>
- Global total production sprats.png
The total capture of sprats in 2010 reported by the FAO was 667,000 tonnes.<ref name=FAOdata />
As foodEdit
Template:See also In Northern Europe, European sprats are commonly smoked and preserved in oil, which retains a strong, smoky flavor.
Sprat, if smoked, is considered to be one of the foods highest in purine content.<ref>Various food types and their purine content http://www.acumedico.com/purine.htm</ref>
Sprats contain long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). They are present in amounts comparable to Atlantic salmon, and up to seven times higher in EPA and DHA than common fresh fillets of gilt-head bream. The sprats contain about 1.43 g/100 g of these polyunsaturated fatty acids that have been found to help prevent mental, neural, and cardiovascular diseases.<ref name="Kalachova">Galina S. Kalachova, et al. "Content of essential polyunsaturated fatty acids in three canned fish species." International Journal of Food Sciences & Nutrition 60.3 (2009): 224–230. Academic Search Premier. EBSCO. Web. 26 October 2011. p.224. [8]</ref>
- Sprattus sprattus.jpg
Sprattus sprattus, the European sprat
- Visserijmuseum048.jpg
Creel with sprat, National Fishery Museum, Belgium
- Visserijmuseum047.jpg
Oven for smoking sprat, National Fishery Museum, Belgium
ReferencesEdit
Further readingEdit
- {{#invoke:Cite taxon|main|fishbase|genus=|species=|subspecies=}}
- Tony Ayling & Geoffrey Cox, Collins Guide to the Sea Fishes of New Zealand, (William Collins Publishers Ltd, Auckland, New Zealand 1982) Template:ISBN