Vigesimal

Revision as of 07:05, 27 May 2025 by imported>Rainbowlack (→‎Americas: fixed typo)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Short description

File:Maya.svg
The Maya numerals are an example of a base-20 numeral system.

Template:Sidebar with collapsible groups A vigesimal (Template:IPAc-en Template:Respell) or base-20 (base-score) numeral system is based on twenty (in the same way in which the decimal numeral system is based on ten). Vigesimal is derived from the Latin adjective Template:Wikt-lang, meaning 'twentieth'.

PlacesEdit

In a vigesimal place system, twenty individual numerals (or digit symbols) are used, ten more than in the decimal system. One modern method of finding the extra needed symbols is to write ten as the letter A, or Template:Vigesimal , where the 20 means base Template:Num, to write nineteen as Template:Vigesimal, and the numbers between with the corresponding letters of the alphabet. This is similar to the common computer-science practice of writing hexadecimal numerals over 9 with the letters "A–F". Another less common method skips over the letter "I", in order to avoid confusion between I20 as eighteen and one, so that the number eighteen is written as J20, and nineteen is written as K20. The number twenty is written as Template:Vigesimal.

Comparison
Decimal Vigesimal Name spelled out
(in English)
0 0 zero
1 1 one
2 2 two
3 3 three
4 4 four
5 5 five
6 6 six
7 7 seven
8 8 eight
9 9 nine
10 A ten
11 B eleven
12 C twelve
13 D thirteen
14 E fourteen
15 F fifteen
16 G sixteen
17 H seventeen
18 I J eighteen
19 J K nineteen
20 10 twenty
400 100 four hundred
8000 1000 eight thousand
160000 10000 one hundred and
sixty thousand
Vigesimal multiplication table
1 2 3 4 5 6 7 8 9 A B C D E F G H I J 10
2 4 6 8 A C E G I 10 12 14 16 18 1A 1C 1E 1G 1I 20
3 6 9 C F I 11 14 17 1A 1D 1G 1J 22 25 28 2B 2E 2H 30
4 8 C G 10 14 18 1C 1G 20 24 28 2C 2G 30 34 38 3C 3G 40
5 A F 10 15 1A 1F 20 25 2A 2F 30 35 3A 3F 40 45 4A 4F 50
6 C I 14 1A 1G 22 28 2E 30 36 3C 3I 44 4A 4G 52 58 5E 60
7 E 11 18 1F 22 29 2G 33 3A 3H 44 4B 4I 55 5C 5J 66 6D 70
8 G 14 1C 20 28 2G 34 3C 40 48 4G 54 5C 60 68 6G 74 7C 80
9 I 17 1G 25 2E 33 3C 41 4A 4J 58 5H 66 6F 74 7D 82 8B 90
A 10 1A 20 2A 30 3A 40 4A 50 5A 60 6A 70 7A 80 8A 90 9A A0
B 12 1D 24 2F 36 3H 48 4J 5A 61 6C 73 7E 85 8G 97 9I A9 B0
C 14 1G 28 30 3C 44 4G 58 60 6C 74 7G 88 90 9C A4 AG B8 C0
D 16 1J 2C 35 3I 4B 54 5H 6A 73 7G 89 92 9F A8 B1 BE C7 D0
E 18 22 2G 3A 44 4I 5C 66 70 7E 88 92 9G AA B4 BI CC D6 E0
F 1A 25 30 3F 4A 55 60 6F 7A 85 90 9F AA B5 C0 CF DA E5 F0
G 1C 28 34 40 4G 5C 68 74 80 8G 9C A8 B4 C0 CG DC E8 F4 G0
H 1E 2B 38 45 52 5J 6G 7D 8A 97 A4 B1 BI CF DC E9 F6 G3 H0
I 1G 2E 3C 4A 58 66 74 82 90 9I AG BE CC DA E8 F6 G4 H2 I0
J 1I 2H 3G 4F 5E 6D 7C 8B 9A A9 B8 C7 D6 E5 F4 G3 H2 I1 J0
10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 G0 H0 I0 J0 100

According to this notation:

Template:Vigesimal is equivalent to forty in decimal = Template:Nowrap
Template:Vigesimal is equivalent to two hundred and sixty in decimal = Template:Nowrap
Template:Vigesimal is equivalent to four hundred in decimal = Template:Nowrap.

In the rest of this article below, numbers are expressed in decimal notation, unless specified otherwise. For example, 10 means ten, 20 means twenty. Numbers in vigesimal notation use the convention that I means eighteen and J means nineteen.

FractionsEdit

As 20 is divisible by two and five and is adjacent to 21, the product of three and seven, thus covering the first four prime numbers, many vigesimal fractions have simple representations, whether terminating or recurring (although thirds are more complicated than in decimal, repeating two digits instead of one). In decimal, dividing by three twice (ninths) only gives one digit periods (Template:Sfrac = 0.1111.... for instance) because 9 is the number below ten. 21, however, the number adjacent to 20 that is divisible by 3, is not divisible by 9. Ninths in vigesimal have six-digit periods. As 20 has the same prime factors as 10 (two and five), a fraction will terminate in decimal if and only if it terminates in vigesimal.

In decimal
Prime factors of the base: Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:green">5
Prime factors of one below the base: Template:Ifsubst style="color:blue">3
Prime factors of one above the base: Template:Ifsubst style="color:Magenta">11
In vigesimal
Prime factors of the base: Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:green">5
Prime factors of one below the base: Template:Ifsubst style="color:blue">J
Prime factors of one above the base: Template:Ifsubst style="color:Magenta">3, Template:Ifsubst style="color:Magenta">7
Fraction Prime factors
of the denominator
Positional representation Positional representation Prime factors
of the denominator
Fraction
Template:Sfrac Template:Ifsubst style="color:green">2 0.5 0.A Template:Ifsubst style="color:green">2 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:blue">3 0.3333... = 0.Template:Overline 0.6D6D... = 0.Template:Overline Template:Ifsubst style="color:Magenta">3 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:green">2 0.25 0.5 Template:Ifsubst style="color:green">2 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:green">5 0.2 0.4 Template:Ifsubst style="color:green">5 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:blue">3 0.1Template:Overline 0.3Template:Overline Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:Magenta">3 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:red">7 0.Template:Overline 0.Template:Overline Template:Ifsubst style="color:Magenta">7 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:green">2 0.125 0.2A Template:Ifsubst style="color:green">2 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:blue">3 0.Template:Overline 0.Template:Overline Template:Ifsubst style="color:Magenta">3 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:green">5 0.1 0.2 Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:green">5 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:Magenta">11 0.Template:Overline 0.Template:Overline Template:Ifsubst style="color:red">B Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:blue">3 0.08Template:Overline 0.1Template:Overline Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:Magenta">3 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:red">13 0.Template:Overline 0.Template:Overline Template:Ifsubst style="color:red">D Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:red">7 0.0Template:Overline 0.1Template:Overline Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:Magenta">7 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:blue">3, Template:Ifsubst style="color:green">5 0.0Template:Overline 0.1Template:Overline Template:Ifsubst style="color:Magenta">3, Template:Ifsubst style="color:green">5 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:green">2 0.0625 0.15 Template:Ifsubst style="color:green">2 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:red">17 0.Template:Overline 0.Template:Overline Template:Ifsubst style="color:red">H Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:blue">3 0.0Template:Overline 0.1Template:Overline Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:Magenta">3 Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:red">19 0.Template:Overline 0.Template:Overline Template:Ifsubst style="color:blue">J Template:Sfrac
Template:Sfrac Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:green">5 0.05 0.1 Template:Ifsubst style="color:green">2, Template:Ifsubst style="color:green">5 Template:Sfrac

Cyclic numbersEdit

The prime factorization of twenty is 22 × 5, so it is not a perfect power. However, its squarefree part, 5, is congruent to 1 (mod 4). Thus, according to Artin's conjecture on primitive roots, vigesimal has infinitely many cyclic primes, but the fraction of primes that are cyclic is not necessarily ~37.395%. An UnrealScript program that computes the lengths of recurring periods of various fractions in a given set of bases found that, of the first 15,456 primes, ~39.344% are cyclic in vigesimal.

Irrational numbersEdit

Algebraic irrational numbers In decimal In vigesimal
[[Square root of 2|Template:Radical]] (the length of the diagonal of a unit square) 1.41421356237309... 1.85DE37JGF09H6...
[[Square root of 3|Template:Radical]] (the length of the diagonal of a unit cube) 1.73205080756887... 1.ECG82BDDF5617...
[[Square root of 5|Template:Radical]] (the length of the diagonal of a 1 × 2 rectangle) 2.2360679774997... 2.4E8AHAB3JHGIB...
Template:Mvar (phi, the golden ratio = Template:Sfrac) 1.6180339887498... 1.C7458F5BJII95...
Transcendental irrational numbers In decimal In vigesimal
[[Pi|Template:Pi]] (pi, the ratio of circumference to diameter) 3.14159265358979... 3.2GCEG9GBHJ9D2...
Template:Mvar (the base of the natural logarithm) 2.7182818284590452... 2.E7651H08B0C95...
Template:Mvar (the limiting difference between the harmonic series and the natural logarithm) 0.5772156649015328606... 0.BAHEA2B19BDIBI...

UseEdit

Quinary-vigesimalEdit

Many cultures that use a vigesimal system count in fives to twenty, then count twenties similarly. Such a system is referred to as quinary-vigesimal by linguists. Examples include Greenlandic, Iñupiaq, Kaktovik, Maya, Nunivak Cupʼig, and Yupʼik numerals.<ref name="Nykl">Template:Cite journal</ref><ref>Template:Cite book</ref>Template:Sfn

AfricaEdit

Vigesimal systems are common in Africa, for example in Yoruba.<ref>Template:Cite journal</ref> While the Yoruba number system may be regarded as a vigesimal system, it is complex.Template:Explain

AmericasEdit

  • Probably the best-known instance of the use of the vigesimal system in the Americas is in Lincoln's Gettysburg address: "Four score and seven years ago ..." (see below).
  • Twenty is a base in the Maya and Aztec number systems. The Maya use the following names for the powers of twenty: {{#invoke:Lang|lang}} (20), {{#invoke:Lang|lang}} (202 = 400), {{#invoke:Lang|lang}} (203 = 8,000), {{#invoke:Lang|lang}} (204 = 160,000), {{#invoke:Lang|lang}} (205 = 3,200,000) and {{#invoke:Lang|lang}} (206 = 64,000,000). See Maya numerals and Maya calendar, Nahuatl language.
  • The Inuit-Yupik-Unangan languages have base-20 number systems. In 1994, Inuit students in Kaktovik, Alaska, came up with the base-20 Kaktovik numerals to better represent their language. Before this invention led to a revival, the Inuit numerals had been falling out of use.<ref name="kakt">Template:Cite journal</ref> The Kaktovik numerals are:
Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit Template:Kaktovik digit
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

AsiaEdit

  • Dzongkha, the national language of Bhutan, has a full vigesimal system, with numerals for the powers of 20, 400, 8,000 and 160,000.
  • Atong, a language spoken in the South Garo Hills of Meghalaya state, Northeast India, and adjacent areas in Bangladesh, has a full vigesimal system that is nowadays considered archaic.<ref>Template:Cite book</ref>
  • In Santali, a Munda language of India, "fifty" is expressed by the phrase bār isī gäl, literally "two twenty ten."<ref>Template:Cite book</ref> Likewise, in Didei, another Munda language spoken in India, complex numerals are decimal to 19 and decimal-vigesimal to 399.<ref>Chatterjee, Suhas. 1963. On Didei nouns, pronouns, numerals, and demonstratives. Chicago: mimeo., 1963. (cf. Munda Bibliography at the University of Hawaii Department of Linguistics)</ref>
  • The Burushaski number system is base-20. For example, 20 altar, 40 alto-altar (2 times 20), 60 iski-altar (3 times 20) etc.
  • In East Asia, the Ainu language also uses a counting system that is based around the number 20. "{{#invoke:Lang|lang}}" is 20, "{{#invoke:Lang|lang}}" (ten more until two twenties) is 30, "{{#invoke:Lang|lang}}" (two twenties) is 40, "{{#invoke:Lang|lang}}" (five twenties) is 100. Subtraction is also heavily used, e.g. "{{#invoke:Lang|lang}}" (one more until ten) is 9.Template:Citation needed
  • The Chukchi language has a vigesimal numeral system.<ref>Template:Cite journal</ref>

OceaniaEdit

There is some evidence of base-20 usage in the Māori language of New Zealand with the suffix hoko- (i.e. hokowhitu, hokotahi).Template:Citation needed

CaucasusEdit

  • Twenty ({{#invoke:Lang|lang}}, {{#invoke:Lang|lang}}) is used as a base number in Georgian for numbers 30 to 99. For example, 40 ({{#invoke:Lang|lang}}, {{#invoke:Lang|lang}}) literally means two-times-twenty, whereas 80 ({{#invoke:Lang|lang}}, {{#invoke:Lang|lang}}), means four-times-twenty. On the other hand, 31 ({{#invoke:Lang|lang}}, {{#invoke:Lang|lang}}) literally means, twenty-and-eleven. 67 ({{#invoke:Lang|lang}}, {{#invoke:Lang|lang}}) is said as, "three-twenty-and-seven".
  • Twenty ({{#invoke:Lang|lang}}) is used as a base number in the Nakh languages (Chechen, Ingush, and Batsbi).

EuropeEdit

In several European languages like French and Danish, 20 is used as a base, at least with respect to the linguistic structure of the names of certain numbers (though a thoroughgoing consistent vigesimal system, based on the powers 20, 400, 8000 etc., is not generally used).

  • Twenty ({{#invoke:Lang|lang}}) is used as a base number in the French names of numbers from 70 to 99, except in the French of Belgium, Switzerland, the Democratic Republic of the Congo, Rwanda, the Aosta Valley and the Channel Islands. For example, {{#invoke:Lang|lang}}, the French word for "80", literally means "four-twenties"; soixante-dix, the word for "70", is literally "sixty-ten"; {{#invoke:Lang|lang}} ("75") is literally "sixty-fifteen"; {{#invoke:Lang|lang}} ("87") is literally "four-twenties-seven"; {{#invoke:Lang|lang}} ("90") is literally "four-twenties-ten"; and {{#invoke:Lang|lang}} ("96") is literally "four-twenties-sixteen". However, in the French of Belgium, Switzerland, the Democratic Republic of the Congo, Rwanda, the Aosta Valley, and the Channel Islands, the numbers 70 and 90 generally have the names {{#invoke:Lang|lang}} and {{#invoke:Lang|lang}}. Therefore, the year 1996 is {{#invoke:Lang|lang}} in Parisian French, but it is {{#invoke:Lang|lang}} in Belgian French. In Switzerland, "80" can be {{#invoke:Lang|lang}} (Geneva, Neuchâtel, Jura) or {{#invoke:Lang|lang}} (Vaud, Valais, Fribourg).
  • Twenty ({{#invoke:Lang|lang}}) is used as a base number in the Danish names of tens from 50 to 90. For example, {{#invoke:Lang|lang}} (short for {{#invoke:Lang|lang}}) means 3 times 20, i.e. 60. However, Danish numerals are not vigesimal since it is only the names of some of the tens that are etymologically formed in a vigesimal way. In contrast with e.g. French {{#invoke:Lang|lang}}, the units only go from zero to nine between each ten which is a defining trait of a decimal system. For details, see Danish numerals.
  • Twenty ({{#invoke:Lang|lang}}) is used as a base number in the Breton names of numbers from 40 to 49 and from 60 to 99. For example, {{#invoke:Lang|lang}} means 2 times 20, i.e. 40, and {{#invoke:Lang|lang}} (literally "three-six and four-twenty") means 3×6 + 4×20, i.e. 98. However, 30 is {{#invoke:Lang|lang}} and not *{{#invoke:Lang|lang}} ("ten and twenty"), and 50 is {{#invoke:Lang|lang}} ("half-hundred").
  • Twenty ({{#invoke:Lang|lang}}) is used as a base number in Welsh for numbers from 20 to 99 (e.g. 50 is {{#invoke:Lang|lang}}, "ten and twoscore"), although since the 1940s a decimal counting system is often used for cardinal numbers. However, the vigesimal system exclusively is used for ordinal numbers, and is still required in telling the time, money, and with weights and measures. {{#invoke:Lang|lang}} means "two twenties" i.e. 40, {{#invoke:Lang|lang}} means 'three twenties' i.e. 60, etc. {{#invoke:Lang|lang}} means 57 (two on fifteen and forty). As with Breton, 50 can also be expressed as {{#invoke:Lang|lang}} ("half hundred"). Prior to its withdrawal from circulation, {{#invoke:Lang|lang}} (note of sixscore) was the nickname for the ten-shilling (120 pence) note, as 120 (old) pence was equal to half a pound sterling. the term {{#invoke:Lang|lang}} continues to be used to mean 50 pence in modern Welsh, and phrases like {{#invoke:Lang|lang}} ('50p piece') are also not uncommon.
  • Twenty ({{#invoke:Lang|lang}}) is traditionally used as a base number in Scottish Gaelic, with {{#invoke:Lang|lang}} or {{#invoke:Lang|lang}} being 30 (ten over twenty, or twenty and ten), {{#invoke:Lang|lang}} 40 (two twenties), {{#invoke:Lang|lang}} 50 (two twenty and ten) / {{#invoke:Lang|lang}} 50 (half a hundred), {{#invoke:Lang|lang}} 60 (three twenties) and so on up to {{#invoke:Lang|lang}} 180 (nine twenties). Nowadays a decimal system is taught in schools, but the vigesimal system is still used by many, particularly older speakers.
  • Twenty ({{#invoke:Lang|lang}}) is traditionally used as a base number in Manx Gaelic, with {{#invoke:Lang|lang}} being 30 (ten and twenty), {{#invoke:Lang|lang}} 40 (two twenties), {{#invoke:Lang|lang}} 50 (ten and two twenties), {{#invoke:Lang|lang}} 60 (three twenty) and so on. A decimal system also exists, using the following tens: {{#invoke:Lang|lang}} (ten), {{#invoke:Lang|lang}} (twenty), {{#invoke:Lang|lang}} (thirty), {{#invoke:Lang|lang}} (forty), {{#invoke:Lang|lang}} (fifty), {{#invoke:Lang|lang}} (sixty), {{#invoke:Lang|lang}} (seventy), {{#invoke:Lang|lang}} (eighty) and {{#invoke:Lang|lang}} (ninety).
  • Twenty ({{#invoke:Lang|lang}}) is used as a base number in Albanian. The word for 40 ({{#invoke:Lang|lang}}) means "two times 20". The Arbëreshë in Italy may use {{#invoke:Lang|lang}} for 60. Formerly, {{#invoke:Lang|lang}} was also used for 80. Today Cham Albanians in Greece use all {{#invoke:Lang|lang}} numbers. Basically, 20 means 1 {{#invoke:Lang|lang}}, 40 means 2 {{#invoke:Lang|lang}}, 60 means 3 {{#invoke:Lang|lang}} and 80 means 4 {{#invoke:Lang|lang}}. Albanian is the only language in the Balkans which has retained elements of the vigesimal numeral system side by side with decimal system. The existence of the two systems in Albanian reflect the contribution of Pre-Indo-European people of the Balkans to the formation of the Paleo-Balkan Indo-European tribes and their language.<ref name="Demiraj">Template:Cite book</ref>
  • Twenty ({{#invoke:Lang|lang}}) is used as a base number in Basque for numbers up to 100 ({{#invoke:Lang|lang}}). The words for 40 ({{#invoke:Lang|lang}}), 60 ({{#invoke:Lang|lang}}) and 80 ({{#invoke:Lang|lang}}) mean "two-score", "three-score" and "four-score", respectively. For example, the number 75 is called {{#invoke:Lang|lang}}, lit. "three-score-and ten-five". The Basque nationalist Sabino Arana proposed a vigesimal digit system to match the spoken language,<ref name="AranaVigesimal">Artículos publicados en la 1.ª época de "Euzkadi" : revista de Ciencias, Bellas Artes y Letras de Bilbao por Arana-Goiri'taŕ Sabin: 1901, Artículos publicados en la 1 época de "Euskadi" : revista de Ciencias, Bellas Artes y Letras de Bilbao por Arana-Goiri'ttarr Sabin : 1901, Sabino Arana, 1908, Bilbao, Eléxpuru Hermanos.

102–112</ref> and, as an alternative, a reform of the spoken language to make it decimal,<ref name="AranaDecimal">Artículos ..., Sabino Arana, 112–118</ref> but both are mostly forgotten.<ref name="Arana">Efemérides Vascas y Reforma d ela Numeración Euzkérica, Sabino Arana, Biblioteca de la Gran Enciclopedia Vasca, Bilbao, 1969. Extracted from the magazine Euskal-Erria, 1880 and 1881.</ref>

  • Twenty ({{#invoke:Lang|lang}} or {{#invoke:Lang|lang}}) is used as a base number in the Resian dialect {{#invoke:Lang|lang}} (3×20), 70 by {{#invoke:Lang|lang}} (3×20 + 10), 80 by {{#invoke:Lang|lang}} (4×20) and 90 by {{#invoke:Lang|lang}} (4×20 + 10).<ref name="Romavsh">Fran Ramovš, Karakteristika slovenskega narečja v Reziji in: Časopis za slovenski jezik, književnost in zgodovino, no 4, 1928, pages: 107-121 [1]</ref><ref name="Merku">{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

  • In the £sd currency system (used in the United Kingdom pre-1971), there were 20 shillings (worth 12 pence each) to the pound. Under the decimal system introduced in 1971 (1 pound equals 100 new pence instead of 240 pence in the old system), the shilling coins still in circulation were re-valued at 5 pence (no more were minted and the shilling coin was demonetised in 1990).
  • In the imperial weight system there are twenty hundredweight in a ton.
  • In English, the name of the cardinal number 20 is most commonly phrased with the word 'twenty'. Counting by the score has been used historically; for example, the famous opening of the Gettysburg Address, "Four score and seven years ago...", refers to the signing of the Declaration of Independence in 1776, 87 years earlier. In the King James Bible, the term score is used over 130 times, though a single score is always expressed as "twenty". Score is still occasionally used to denote groups of 20 analogously to the use of dozen to quantify groups of 12.
  • Other languages have terms similar to score, such as Danish and Norwegian Template:Wikt-lang.
  • Even in regions where greater aspects of the Brythonic Celtic languages may be less apparent in modern dialect, sheep enumeration systems that are vigesimal are recalled to the present day. See {{#invoke:Lang|lang}}.

Software applicationsEdit

Open Location Code uses a word-safe version of base 20 for its geocodes. The characters in this alphabet were chosen to avoid accidentally forming words. The developers scored all possible sets of 20 letters in 30 different languages for likelihood of forming words, and chose a set that formed as few recognizable words as possible.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The alphabet is also intended to reduce typographical errors by avoiding visually similar digits, and is case-insensitive.

Word-safe base 20
Base 20 digit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Code digit 2 3 4 5 6 7 8 9 C F G H J M P Q R V W X

Related observationsEdit

  • Among multiples of 10, 20 is described in a special way in some languages. For example, the Spanish words {{#invoke:Lang|lang}} (30) and {{#invoke:Lang|lang}} (40) consist of "{{#invoke:Lang|lang}} (10 times)", "{{#invoke:Lang|lang}} (10 times)", but the word {{#invoke:Lang|lang}} (20) is not presently connected to any word meaning "two" (although historically it is<ref>The diachronic view is like this. Template:Langx < Template:Langx, the IE etymology of which (view) connects it to the roots meaning '2' and 10'. (The etymological databases of the Tower of Babel project are referred here.)</ref>). Similarly, in Semitic languages such as Arabic and Hebrew, the numbers 30, 40 ... 90 are expressed by morphologically plural forms of the words for the numbers 3, 4 ... 9, but the number 20 is expressed by a morphologically plural form of the word for 10. The Japanese language has a special word (hatachi) for 20 years (of age), and for the 20th day of the month (hatsuka).
  • In some languages (e.g. English, Slavic languages and German), the names of the two-digit numbers from 11 to 19 consist of one word, but the names of the two-digit numbers from 21 on consist of two words. So for example, the English words eleven (11), twelve (12), thirteen (13) etc., as opposed to twenty-one (21), twenty-two (22), twenty-three (23), etc. In French, this is true up to 16. In a number of other languages (such as Hebrew), the names of the numbers from 11 to 19 contain two words, but one of these words is a special "teen" form, which is different from the ordinary form of the word for the number 10, and it may in fact be only found in these names of the numbers 11–19.
  • Cantonese<ref>Lau, S. A Practical Cantonese English Dictionary (1977) The Government Printer</ref> and Wu Chinese frequently use the single unit {{#invoke:Lang|lang}} (Cantonese yàh, Shanghainese nyae or ne, Mandarin niàn) for twenty, in addition to the fully decimal {{#invoke:Lang|lang}} (Cantonese yìh sàhp, Shanghainese el sah, Mandarin èr shí) which literally means "two ten". Equivalents exist for 30 and 40 ({{#invoke:Lang|lang}} and {{#invoke:Lang|lang}} respectively: Mandarin and ), but these are more seldom used. This is a historic remnant of a vigesimal system.Template:Citation needed
  • Although Khmer numerals have represented a decimal positional notation system since at least the 7th century, Old Khmer, or Angkorian Khmer, also possessed separate symbols for the numbers 10, 20, and 100. Each multiple of 20 or 100 would require an additional stroke over the character, so the number 47 was constructed using the 20 symbol with an additional upper stroke, followed by the symbol for number 7. This suggests that spoken Angkorian Khmer used a vigesimal system.
  • Thai uses the term {{#invoke:Lang|lang}} (yi sip) for 20. Other multiples of ten consist of the base number, followed by the word for ten, e.g. {{#invoke:Lang|lang}} (sam sip), lit. three ten, for thirty. The yi of yi sip is different from the number two in other positions, which is สอง (song). Nevertheless, yi sip is a loan word from Chinese.
  • Lao similarly forms multiples of ten by putting the base number in front of the word ten, so {{#invoke:Lang|lang}} (sam sip), litt. three ten, for thirty. The exception is twenty, for which the word {{#invoke:Lang|lang}} (xao) is used. ({{#invoke:Lang|lang}} sao is also used in the North-Eastern and Northern dialects of Thai, but not in standard Thai.)
  • The Kharosthi numeral system behaves like a partial vigesimal system.

Examples in Mesoamerican languagesEdit

Powers of twenty in Yucatec Maya and NahuatlEdit

Powers of twenty in Yucatec Maya and Nahuatl
Number English Maya Nahuatl (modern orthography) Classical Nahuatl Nahuatl root Aztec pictogram
1 One Hun Se Ce Ce File:Maya 1.svg
20 Twenty K'áal Sempouali Cempohualli (Cempoalli) Pohualli File:Veinte Nahuatl.png
400 Four hundred Bak Sentsontli Centzontli Tzontli File:Cuatrocientos Nahuatl.png
8,000 Eight thousand Pic Senxikipili Cenxiquipilli Xiquipilli File:Xiquipilli.jpg
160,000 One hundred sixty thousand Calab Sempoualxikipili Cempohualxiquipilli Pohualxiquipilli  
3,200,000 Three million two hundred thousand Kinchil Sentsonxikipili Centzonxiquipilli Tzonxiquipilli  
64,000,000 Sixty-four million Alau Sempoualtzonxikipili Cempohualtzonxiquipilli Pohualtzonxiquipilli  

Counting in units of twentyEdit

This table shows the Maya numerals and the number names in Yucatec Maya, Nahuatl in modern orthography and in Classical Nahuatl.

From one to ten (1 – 10)
1  (one) 2 (two) 3 (three) 4 (four) 5 (five) 6 (six) 7 (seven) 8 (eight) 9 (nine) 10 (ten)
File:Maya 1.svg File:Maya 2.svg File:Maya 3.svg File:Maya 4.svg File:Maya 5.svg File:Maya 6.svg File:Maya 7.svg File:Maya 8.svg File:Maya 9.svg File:Maya 10.svg
Hun Ka'ah Óox Kan Ho' Wak Uk Waxak Bolon Lahun
Se Ome Yeyi Naui Makuili Chikuasen Chikome Chikueyi Chiknaui Majtlaktli
Ce Ome Yei Nahui Macuilli Chicuace Chicome Chicuei Chicnahui Matlactli
From eleven to twenty (11 – 20)
11 12 13 14 15 16 17 18 19 20
File:Maya 11.svg File:Maya 12.svg File:Maya 13.svg File:Maya 14.svg File:Maya 15.svg File:Maya 16.svg File:Maya 17.svg File:Maya 18.svg File:Maya 19.svg File:Maya 1.svg
File:Mayan00.svg
Buluk Lahka'a Óox lahun Kan lahun Ho' lahun Wak lahun Uk lahun Waxak lahun Bolon lahun Hun k'áal
Majtlaktli onse Majtlaktli omome Majtlaktli omeyi Majtlaktli onnaui Kaxtoli Kaxtoli onse Kaxtoli omome Kaxtoli omeyi Kaxtoli onnaui Sempouali
Matlactli huan ce Matlactli huan ome Matlactli huan yei Matlactli huan nahui Caxtolli Caxtolli huan ce Caxtolli huan ome Caxtolli huan yei Caxtolli huan nahui Cempohualli
From twenty-one to thirty (21 – 30)
21 22 23 24 25 26 27 28 29 30
File:Maya 1.svg
File:Maya 1.svg
File:Maya 1.svg
File:Maya 2.svg
File:Maya 1.svg
File:Maya 3.svg
File:Maya 1.svg
File:Maya 4.svg
File:Maya 1.svg
File:Maya 5.svg
File:Maya 1.svg
File:Maya 6.svg
File:Maya 1.svg
File:Maya 7.svg
File:Maya 1.svg
File:Maya 8.svg
File:Maya 1.svg
File:Maya 9.svg
File:Maya 1.svg
File:Maya 10.svg
Hump'éel katak hun k'áal Ka'ah katak hun k'áal Óox katak hun k'áal Kan katak hun k'áal Ho' katak hun k'áal Wak katak hun k'áal Uk katak hun k'áal Waxak katak hun k'áal Bolon katak hun k'áal Lahun katak hun k'áal
Sempouali onse Sempouali omome Sempouali omeyi Sempouali onnaui Sempouali ommakuili Sempouali onchikuasen Sempouali onchikome Sempouali onchikueyi Sempouali onchiknaui Sempouali ommajtlaktli
Cempohualli huan ce Cempohualli huan ome Cempohualli huan yei Cempohualli huan nahui Cempohualli huan macuilli Cempohualli huan chicuace Cempohualli huan chicome Cempohualli huan chicuei Cempohualli huan chicnahui Cempohualli huan matlactli
From thirty-one to forty (31 – 40)
31 32 33 34 35 36 37 38 39 40
File:Maya 1.svg
File:Maya 11.svg
File:Maya 1.svg
File:Maya 12.svg
File:Maya 1.svg
File:Maya 13.svg
File:Maya 1.svg
File:Maya 14.svg
File:Maya 1.svg
File:Maya 15.svg
File:Maya 1.svg
File:Maya 16.svg
File:Maya 1.svg
File:Maya 17.svg
File:Maya 1.svg
File:Maya 18.svg
File:Maya 1.svg
File:Maya 19.svg
File:Maya 2.svg
File:Mayan00.svg
Buluk katak hun k'áal Lahka'a katak hun k'áal Óox lahun katak hun k'áal Kan lahun katak hun k'áal Ho' lahun katak hun k'áal Wak lahun katak hun k'áal Uk lahun katak hun k'áal Waxak lahun katak hun k'áal Bolon lahun katak hun k'áal Ka' k'áal
Sempouali ommajtlaktli onse Sempouali ommajtlaktli omome Sempouali ommajtlaktli omeyi Sempouali ommajtlaktli onnaui Sempouali onkaxtoli Sempouali onkaxtoli onse Sempouali onkaxtoli omome Sempouali onkaxtoli omeyi Sempouali onkaxtoli onnaui Ompouali
Cempohualli huan matlactli huan ce Cempohualli huan matlactli huan ome Cempohualli huan matlactli huan yei Cempohualli huan matlactli huan nahui Cempohualli huan caxtolli Cempohualli huan caxtolli huan ce Cempohualli huan caxtolli huan ome Cempohualli huan caxtolli huan yei Cempohualli huan caxtolli huan nahui Ompohualli
From twenty to two hundred in steps of twenty (20 – 200)
20 40 60 80 100 120 140 160 180 200
File:Maya 1.svg
File:Mayan00.svg
File:Maya 2.svg
File:Mayan00.svg
File:Maya 3.svg
File:Mayan00.svg
File:Maya 4.svg
File:Mayan00.svg
File:Maya 5.svg
File:Mayan00.svg
File:Maya 6.svg
File:Mayan00.svg
File:Maya 7.svg
File:Mayan00.svg
File:Maya 8.svg
File:Mayan00.svg
File:Maya 9.svg
File:Mayan00.svg
File:Maya 10.svg
File:Mayan00.svg
Hun k'áal Ka' k'áal Óox k'áal Kan k'áal Ho' k'áal Wak k'áal Uk k'áal Waxak k'áal Bolon k'áal Lahun k'áal
Sempouali Ompouali Yepouali Naupouali Makuilpouali Chikuasempouali Chikompouali Chikuepouali Chiknaupouali Majtlakpouali
Cempohualli Ompohualli Yeipohualli Nauhpohualli Macuilpohualli Chicuacepohualli Chicomepohualli Chicueipohualli Chicnahuipohualli Matlacpohualli
From two hundred twenty to four hundred in steps of twenty (220 – 400)
220 240 260 280 300 320 340 360 380 400
File:Maya 11.svg
File:Mayan00.svg
File:Maya 12.svg
File:Mayan00.svg
File:Maya 13.svg
File:Mayan00.svg
File:Maya 14.svg
File:Mayan00.svg
File:Maya 15.svg
File:Mayan00.svg
File:Maya 16.svg
File:Mayan00.svg
File:Maya 17.svg
File:Mayan00.svg
File:Maya 18.svg
File:Mayan00.svg
File:Maya 19.svg
File:Mayan00.svg
File:Maya 1.svg
File:Mayan00.svg
File:Mayan00.svg
Buluk k'áal Lahka'a k'áal Óox lahun k'áal Kan lahun k'áal Ho' lahun k'áal Wak lahun k'áal Uk lahun k'áal Waxak lahun k'áal Bolon lahun k'áal Hun bak
Majtlaktli onse pouali Majtlaktli omome pouali Majtlaktli omeyi pouali Majtlaktli onnaui pouali Kaxtolpouali Kaxtolli onse pouali Kaxtolli omome pouali Kaxtolli omeyi pouali Kaxtolli onnaui pouali Sentsontli
Matlactli huan ce pohualli Matlactli huan ome pohualli Matlactli huan yei pohualli Matlactli huan nahui pohualli Caxtolpohualli Caxtolli huan ce pohualli Caxtolli huan ome pohualli Caxtolli huan yei pohualli Caxtolli huan nahui pohualli Centzontli

NotesEdit

Template:Reflist

SourcesEdit

Further readingEdit

  • Karl Menninger: Number words and number symbols: a cultural history of numbers; translated by Paul Broneer from the revised German edition. Cambridge, Mass.: M.I.T. Press, 1969 (also available in paperback: New York: Dover, 1992 Template:Isbn)
  • Levi Leonard Conant: The Number Concept: Its Origin and Development; New York, New York: Macmillan & Co, 1931. Project Gutenberg EBook

Template:Sister project Template:Authority control