Template:Short description Template:Use dmy dates {{#invoke:Hatnote|hatnote}}{{#ifeq:||}} This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is neither prime nor composite.
The first 1000 prime numbersEdit
The following table lists the first 1000 primes, with 20 columns of consecutive primes in each of the 50 rows.<ref>Template:Cite book</ref>
(sequence A000040 in the OEIS).
The Goldbach conjecture verification project reports that it has computed all primes smaller than 4×1018.<ref>Tomás Oliveira e Silva, Goldbach conjecture verification Template:Webarchive. Retrieved 16 July 2013</ref> That means 95,676,260,903,887,607 primes<ref>(sequence A080127 in the OEIS)</ref> (nearly 1017), but they were not stored. There are known formulae to evaluate the prime-counting function (the number of primes smaller than a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2Template:E) smaller than 1023. A different computation found that there are 18,435,599,767,349,200,867,866 primes (roughly 2Template:E) smaller than 1024, if the Riemann hypothesis is true.<ref name="Franke">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Lists of primes by typeEdit
Below are listed the first prime numbers of many named forms and types. More details are in the article for the name. n is a natural number (including 0) in the definitions.
Balanced primesEdit
Primes with equal-sized prime gaps after and before them, so that they are equal to the arithmetic mean of the nearest primes after and before.
- 5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (Template:OEIS2C).
Bell primesEdit
Primes that are the number of partitions of a set with n members.
2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837. The next term has 6,539 digits. (Template:OEIS2C)
Chen primesEdit
Where p is prime and p+2 is either a prime or semiprime.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 (Template:OEIS2C)
Circular primesEdit
A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10).
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993, 331999, 391939, 393919, 919393, 933199, 939193, 939391, 993319, 999331 (Template:OEIS2C)
Some sources only list the smallest prime in each cycle, for example, listing 13, but omitting 31 (OEIS really calls this sequence circular primes, but not the above sequence):
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, 1111111111111111111, 11111111111111111111111 (Template:OEIS2C)
All repunit primes are circular.
Cluster primesEdit
A cluster prime is a prime p such that every even natural number k ≤ p − 3 is the difference of two primes not exceeding p.
3, 5, 7, 11, 13, 17, 19, 23, ... (Template:OEIS2C)
All primes between 3 and 89, inclusive, are cluster primes. The first 10 primes that are not cluster primes are:
2, 97, 127, 149, 191, 211, 223, 227, 229, 251.
Cousin primesEdit
Where (p, p + 4) are both prime.
(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281) (Template:OEIS2C, Template:OEIS2C)
Cuban primesEdit
Of the form <math>\tfrac{x^3-y^3}{x-y}</math> where x = y + 1.
7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (Template:OEIS2C)
Of the form <math>\tfrac{x^3-y^3}{x-y}</math> where x = y + 2.
13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249 (Template:OEIS2C)
Cullen primesEdit
Of the form n×2n + 1.
3, 393050634124102232869567034555427371542904833 (Template:OEIS2C)
Delicate primesEdit
Primes that having any one of their (base 10) digits changed to any other value will always result in a composite number.
294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139 (Template:OEIS2C)
Dihedral primesEdit
Primes that remain prime when read upside down or mirrored in a seven-segment display.
2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081 (Template:OEIS2C)
Eisenstein primes without imaginary partEdit
Eisenstein integers that are irreducible and real numbers (primes of the form 3n − 1).
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401 (Template:OEIS2C)
EmirpsEdit
Primes that become a different prime when their decimal digits are reversed. The name "emirp" is the reverse of the word "prime".
13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991 (Template:OEIS2C)
Euclid primesEdit
Of the form pn# + 1 (a subset of primorial primes).
3, 7, 31, 211, 2311, 200560490131 (Template:OEIS2C<ref name="A018239">Template:OEIS2C includes 2 = empty product of first 0 primes plus 1, but 2 is excluded in this list.</ref>)
Euler irregular primesEdit
A prime <math>p</math> that divides Euler number <math>E_{2n}</math> for some <math>0\leq 2n\leq p-3</math>.
19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241, 251, 263, 277, 307, 311, 349, 353, 359, 373, 379, 419, 433, 461, 463, 491, 509, 541, 563, 571, 577, 587 (Template:OEIS2C)
Euler (p, p − 3) irregular primesEdit
Primes <math>p</math> such that <math>(p, p-3)</math> is an Euler irregular pair.
149, 241, 2946901 (Template:OEIS2C)
Factorial primesEdit
2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 (Template:OEIS2C)
Fermat primesEdit
Of the form 22n + 1.
3, 5, 17, 257, 65537 (Template:OEIS2C)
Template:As of these are the only known Fermat primes, and conjecturally the only Fermat primes. The probability of the existence of another Fermat prime is less than one in a billion.<ref>Template:Cite arXiv</ref>
Generalized Fermat primesEdit
Of the form a2n + 1 for fixed integer a.
a = 2: 3, 5, 17, 257, 65537 (Template:OEIS2C)
a = 8: (none exist)
a = 12: 13
a = 14: 197
a = 18: 19
a = 20: 401, 160001
a = 22: 23
a = 24: 577, 331777
Fibonacci primesEdit
Primes in the Fibonacci sequence F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.
2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (Template:OEIS2C)
Fortunate primesEdit
Fortunate numbers that are prime (it has been conjectured they all are).
3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223, 229, 233, 239, 271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397 (Template:OEIS2C)
Gaussian primesEdit
Prime elements of the Gaussian integers; equivalently, primes of the form 4n + 3.
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503 (Template:OEIS2C)
Good primesEdit
Primes pn for which pn2 > pn−i pn+i for all 1 ≤ i ≤ n−1, where pn is the nth prime.
5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307 (Template:OEIS2C)
Happy primesEdit
Happy numbers that are prime.
7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093 (Template:OEIS2C)
Harmonic primesEdit
Primes p for which there are no solutions to Hk ≡ 0 (mod p) and Hk ≡ −ωp (mod p) for 1 ≤ k ≤ p−2, where Hk denotes the k-th harmonic number and ωp denotes the Wolstenholme quotient.<ref>Template:Cite journal</ref>
5, 13, 17, 23, 41, 67, 73, 79, 107, 113, 139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277, 281, 293, 307, 311, 317, 331, 337, 349 (Template:OEIS2C)
Higgs primes for squaresEdit
Primes p for which p − 1 divides the square of the product of all earlier terms.
2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349 (Template:OEIS2C)
Highly cototient primesEdit
Primes that are a cototient more often than any integer below it except 1.
2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889 (Template:OEIS2C)
Home primesEdit
For Template:Math, write the prime factorization of Template:Mvar in base 10 and concatenate the factors; iterate until a prime is reached.
2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277 (Template:OEIS2C)
Irregular primesEdit
Odd primes p that divide the class number of the p-th cyclotomic field.
37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613 (Template:OEIS2C)
(p, p − 3) irregular primesEdit
(See Wolstenholme prime)
(p, p − 5) irregular primesEdit
Primes p such that (p, p−5) is an irregular pair.<ref name="Johnson">Template:Cite journal</ref>
(p, p − 9) irregular primesEdit
Primes p such that (p, p − 9) is an irregular pair.<ref name="Johnson" />
67, 877 (Template:OEIS2C)
Isolated primesEdit
Primes p such that neither p − 2 nor p + 2 is prime.
2, 23, 37, 47, 53, 67, 79, 83, 89, 97, 113, 127, 131, 157, 163, 167, 173, 211, 223, 233, 251, 257, 263, 277, 293, 307, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439, 443, 449, 457, 467, 479, 487, 491, 499, 503, 509, 541, 547, 557, 563, 577, 587, 593, 607, 613, 631, 647, 653, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 839, 853, 863, 877, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 (Template:OEIS2C)
Leyland primesEdit
Of the form xy + yx, with 1 < x < y.
17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193 (Template:OEIS2C)
Long primesEdit
Primes p for which, in a given base b, <math>\frac{b^{p-1}-1}{p}</math> gives a cyclic number. They are also called full reptend primes. Primes p for base 10:
7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593 (Template:OEIS2C)
Lucas primesEdit
Primes in the Lucas number sequence L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2.
2,<ref>It varies whether L0 = 2 is included in the Lucas numbers.</ref> 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 (Template:OEIS2C)
Lucky primesEdit
Lucky numbers that are prime.
3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997 (Template:OEIS2C)
Mersenne primesEdit
Of the form 2n − 1.
3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 (Template:OEIS2C)
Template:As of, there are 52 known Mersenne primes. The 13th, 14th, and 52nd have respectively 157, 183, and 41,024,320 digits. This includes the largest known prime 2136,279,841−1, which is the 52nd Mersenne prime.
Mersenne divisorsEdit
Primes p that divide 2n − 1, for some prime number n.
3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343 (Template:OEIS2C)
All Mersenne primes are, by definition, members of this sequence.
Mersenne prime exponentsEdit
Primes p such that 2p − 1 is prime.
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161 (Template:OEIS2C)
Template:As of, four more are known to be in the sequence, but it is not known whether they are the next:
74207281, 77232917, 82589933, 136279841
Double Mersenne primesEdit
A subset of Mersenne primes of the form 22p−1 − 1 for prime p.
7, 127, 2147483647, 170141183460469231731687303715884105727 (primes in Template:OEIS2C)
Generalized repunit primesEdit
Of the form (an − 1) / (a − 1) for fixed integer a.
For a = 2, these are the Mersenne primes, while for a = 10 they are the repunit primes. For other small a, they are given below:
a = 3: 13, 1093, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013 (Template:OEIS2C)
a = 4: 5 (the only prime for a = 4)
a = 5: 31, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531 (Template:OEIS2C)
a = 6: 7, 43, 55987, 7369130657357778596659, 3546245297457217493590449191748546458005595187661976371 (Template:OEIS2C)
a = 7: 2801, 16148168401, 85053461164796801949539541639542805770666392330682673302530819774105141531698707146930307290253537320447270457
a = 8: 73 (the only prime for a = 8)
a = 9: none exist
Other generalizations and variationsEdit
Many generalizations of Mersenne primes have been defined. This include the following:
- Primes of the form Template:Math,<ref>Template:Cite OEIS</ref><ref>Template:Cite OEIS</ref><ref>Template:Cite OEIS</ref> including the Mersenne primes and the cuban primes as special cases
- Williams primes, of the form Template:Math
Mills primesEdit
Of the form ⌊θ3n⌋, where θ is Mills' constant. This form is prime for all positive integers n.
2, 11, 1361, 2521008887, 16022236204009818131831320183 (Template:OEIS2C)
Minimal primesEdit
Primes for which there is no shorter sub-sequence of the decimal digits that form a prime. There are exactly 26 minimal primes:
2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 (Template:OEIS2C)
Newman–Shanks–Williams primesEdit
Newman–Shanks–Williams numbers that are prime.
7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599 (Template:OEIS2C)
Non-generous primesEdit
Primes p for which the least positive primitive root is not a primitive root of p2. Three such primes are known; it is not known whether there are more.<ref>Template:Cite journal</ref>
2, 40487, 6692367337 (Template:OEIS2C)
Palindromic primesEdit
Primes that remain the same when their decimal digits are read backwards.
2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 (Template:OEIS2C)
Palindromic wing primesEdit
Primes of the form <math>\frac{a \big( 10^m-1 \big)}{9} \pm b \times 10^{\frac{ m-1 }{2}}</math> with <math>0 \le a \pm b < 10</math>.<ref>Template:Cite journal</ref> This means all digits except the middle digit are equal.
101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 11311, 11411, 33533, 77377, 77477, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999 (Template:OEIS2C)
Partition primesEdit
Partition function values that are prime.
2, 3, 5, 7, 11, 101, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557 (Template:OEIS2C)
Pell primesEdit
Primes in the Pell number sequence P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2.
2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449 (Template:OEIS2C)
Permutable primesEdit
Any permutation of the decimal digits is a prime.
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111 (Template:OEIS2C)
Perrin primesEdit
Primes in the Perrin number sequence P(0) = 3, P(1) = 0, P(2) = 2, P(n) = P(n−2) + P(n−3).
2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 (Template:OEIS2C)
Pierpont primesEdit
Of the form 2u3v + 1 for some integers u,v ≥ 0.
These are also class 1- primes.
2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457 (Template:OEIS2C)
Pillai primesEdit
Primes p for which there exist n > 0 such that p divides n! + 1 and n does not divide p − 1.
23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499 (Template:OEIS2C)
Primes of the form n4 + 1Edit
Of the form n4 + 1.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>
2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 (Template:OEIS2C)
Primeval primesEdit
Primes for which there are more prime permutations of some or all the decimal digits than for any smaller number.
2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079 (Template:OEIS2C)
Primorial primesEdit
Of the form pn# ± 1.
3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (union of Template:OEIS2C and Template:OEIS2C<ref name="A018239"/>)
Proth primesEdit
Of the form k×2n + 1, with odd k and k < 2n.
3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 (Template:OEIS2C)
Pythagorean primesEdit
Of the form 4n + 1.
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449 (Template:OEIS2C)
Prime quadrupletsEdit
Where (p, p+2, p+6, p+8) are all prime.
(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) (Template:OEIS2C, Template:OEIS2C, Template:OEIS2C, Template:OEIS2C)
Quartan primesEdit
Of the form x4 + y4, where x,y > 0.
2, 17, 97, 257, 337, 641, 881 (Template:OEIS2C)
Ramanujan primesEdit
Integers Rn that are the smallest to give at least n primes from x/2 to x for all x ≥ Rn (all such integers are primes).
2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491 (Template:OEIS2C)
Regular primesEdit
Primes p that do not divide the class number of the p-th cyclotomic field.
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281 (Template:OEIS2C)
Repunit primesEdit
Primes containing only the decimal digit 1.
11, 1111111111111111111 (19 digits), 11111111111111111111111 (23 digits) (Template:OEIS2C)
The next have 317, 1031, 49081, 86453, 109297, and 270343 digits respectively. (Template:OEIS2C)
Residue classes of primesEdit
Of the form an + d for fixed integers a and d. Also called primes congruent to d modulo a.
The primes of the form 2n+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.
2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 (Template:OEIS2C)
4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 (Template:OEIS2C)
4n+3: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107 (Template:OEIS2C)
6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139 (Template:OEIS2C)
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 (Template:OEIS2C)
8n+1: 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353 (Template:OEIS2C)
8n+3: 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251 (Template:OEIS2C)
8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269 (Template:OEIS2C)
8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263 (Template:OEIS2C)
10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281 (Template:OEIS2C)
10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 (Template:OEIS2C)
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 (Template:OEIS2C)
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359 (Template:OEIS2C)
12n+1: 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349 (Template:OEIS2C)
12n+5: 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269 (Template:OEIS2C)
12n+7: 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271 (Template:OEIS2C)
12n+11: 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263 (Template:OEIS2C)
Safe primesEdit
Where p and (p−1) / 2 are both prime.
5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907 (Template:OEIS2C)
Self primes in base 10Edit
Primes that cannot be generated by any integer added to the sum of its decimal digits.
3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873 (Template:OEIS2C)
Sexy primesEdit
Where (p, p + 6) are both prime.
(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23, 29), (31, 37), (37, 43), (41, 47), (47, 53), (53, 59), (61, 67), (67, 73), (73, 79), (83, 89), (97, 103), (101, 107), (103, 109), (107, 113), (131, 137), (151, 157), (157, 163), (167, 173), (173, 179), (191, 197), (193, 199) (Template:OEIS2C, Template:OEIS2C)
Smarandache–Wellin primesEdit
Primes that are the concatenation of the first n primes written in decimal.
2, 23, 2357 (Template:OEIS2C)
The fourth Smarandache-Wellin prime is the 355-digit concatenation of the first 128 primes that end with 719.
Solinas primesEdit
Of the form 2k − c1·2k−1 − c2·2k−2 − ... − ck.
- 3, 5, 7, 11, 13 (Template:OEIS2C)
- 232 − 5, the largest prime that fits into 32 bits of memory.<ref>https://t5k.org/lists/2small/0bit.html</ref>
- 264 − 59, the largest prime that fits into 64 bits of memory.
Sophie Germain primesEdit
Where p and 2p + 1 are both prime. A Sophie Germain prime has a corresponding safe prime.
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 (Template:OEIS2C)
Stern primesEdit
Primes that are not the sum of a smaller prime and twice the square of a nonzero integer.
2, 3, 17, 137, 227, 977, 1187, 1493 (Template:OEIS2C)
Template:As of, these are the only known Stern primes, and possibly the only existing.
Super-primesEdit
Primes with prime-numbered indexes in the sequence of prime numbers (the 2nd, 3rd, 5th, ... prime).
3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991 (Template:OEIS2C)
Supersingular primesEdit
There are exactly fifteen supersingular primes:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 (Template:OEIS2C)
Thabit primesEdit
Of the form 3×2n − 1.
2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 (Template:OEIS2C)
The primes of the form 3×2n + 1 are related.
7, 13, 97, 193, 769, 12289, 786433, 3221225473, 206158430209, 6597069766657 (Template:OEIS2C)
Prime tripletsEdit
Where (p, p+2, p+6) or (p, p+4, p+6) are all prime.
(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353) (Template:OEIS2C, Template:OEIS2C, Template:OEIS2C)
Truncatable primeEdit
Left-truncatableEdit
Primes that remain prime when the leading decimal digit is successively removed.
2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683 (Template:OEIS2C)
Right-truncatableEdit
Primes that remain prime when the least significant decimal digit is successively removed.
2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797 (Template:OEIS2C)
Two-sidedEdit
Primes that are both left-truncatable and right-truncatable. There are exactly fifteen two-sided primes:
2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 (Template:OEIS2C)
Twin primesEdit
Where (p, p+2) are both prime.
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463) (Template:OEIS2C, Template:OEIS2C)
Unique primesEdit
The list of primes p for which the period length of the decimal expansion of 1/p is unique (no other prime gives the same period).
3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 (Template:OEIS2C)
Wagstaff primesEdit
Of the form (2n + 1) / 3.
3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 (Template:OEIS2C)
Values of n:
3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 (Template:OEIS2C)
Wall–Sun–Sun primesEdit
A prime p > 5, if p2 divides the Fibonacci number <math>F_{p - \left(\fracTemplate:PTemplate:5\right)}</math>, where the Legendre symbol <math>\left(\fracTemplate:PTemplate:5\right)</math> is defined as
- <math>\left(\frac{p}{5}\right) = \begin{cases} 1 &\textrm{if}\;p \equiv \pm1 \pmod 5\\ -1 &\textrm{if}\;p \equiv \pm2 \pmod 5. \end{cases}</math>
Template:As of, no Wall-Sun-Sun primes are known.
Wieferich primesEdit
Primes p such that Template:Nowrap for fixed integer a > 1.
2p − 1 ≡ 1 (mod p2): 1093, 3511 (Template:OEIS2C)
3p − 1 ≡ 1 (mod p2): 11, 1006003 (Template:OEIS2C)<ref>Template:Cite book</ref><ref>{{#invoke:citation/CS1|citation
|CitationClass=web
}}</ref><ref>Template:Cite journal</ref>
4p − 1 ≡ 1 (mod p2): 1093, 3511
5p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 (Template:OEIS2C)
6p − 1 ≡ 1 (mod p2): 66161, 534851, 3152573 (Template:OEIS2C)
7p − 1 ≡ 1 (mod p2): 5, 491531 (Template:OEIS2C)
8p − 1 ≡ 1 (mod p2): 3, 1093, 3511
9p − 1 ≡ 1 (mod p2): 2, 11, 1006003
10p − 1 ≡ 1 (mod p2): 3, 487, 56598313 (Template:OEIS2C)
11p − 1 ≡ 1 (mod p2): 71<ref name="RibenboimWelt">Template:Cite book</ref>
12p − 1 ≡ 1 (mod p2): 2693, 123653 (Template:OEIS2C)
13p − 1 ≡ 1 (mod p2): 2, 863, 1747591 (Template:OEIS2C)<ref name="RibenboimWelt" />
14p − 1 ≡ 1 (mod p2): 29, 353, 7596952219 (Template:OEIS2C)
15p − 1 ≡ 1 (mod p2): 29131, 119327070011 (Template:OEIS2C)
16p − 1 ≡ 1 (mod p2): 1093, 3511
17p − 1 ≡ 1 (mod p2): 2, 3, 46021, 48947 (Template:OEIS2C)<ref name="RibenboimWelt" />
18p − 1 ≡ 1 (mod p2): 5, 7, 37, 331, 33923, 1284043 (Template:OEIS2C)
19p − 1 ≡ 1 (mod p2): 3, 7, 13, 43, 137, 63061489 (Template:OEIS2C)<ref name="RibenboimWelt" />
20p − 1 ≡ 1 (mod p2): 281, 46457, 9377747, 122959073 (Template:OEIS2C)
21p − 1 ≡ 1 (mod p2): 2
22p − 1 ≡ 1 (mod p2): 13, 673, 1595813, 492366587, 9809862296159 (Template:OEIS2C)
23p − 1 ≡ 1 (mod p2): 13, 2481757, 13703077, 15546404183, 2549536629329 (Template:OEIS2C)
24p − 1 ≡ 1 (mod p2): 5, 25633
25p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801
Template:As of, these are all known Wieferich primes with a ≤ 25.
Wilson primesEdit
Primes p for which p2 divides (p−1)! + 1.
5, 13, 563 (Template:OEIS2C)
Template:As of, these are the only known Wilson primes.
Wolstenholme primesEdit
Primes p for which the binomial coefficient <math>{{2p-1}\choose{p-1}} \equiv 1 \pmod{p^4}.</math>
16843, 2124679 (Template:OEIS2C)
Template:As of, these are the only known Wolstenholme primes.
Woodall primesEdit
Of the form n×2n − 1.
7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319 (Template:OEIS2C)
See alsoEdit
Template:Portal Template:Div col
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
ReferencesEdit
External linksEdit
- [1] All prime numbers from 31 to 6,469,693,189 for free download.
- Lists of Primes at the Prime Pages.
- The Nth Prime Page Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range.
- Interface to a list of the first 98 million primes (primes less than 2,000,000,000)
- {{#invoke:Template wrapper|{{#if:|list|wrap}}|_template=cite web
|_exclude=urlname, _debug, id |url = https://mathworld.wolfram.com/{{#if:topics/PrimeNumberSequences%7Ctopics/PrimeNumberSequences.html}} |title = Prime Number Sequences |author = Weisstein, Eric W. |website = MathWorld |access-date = |ref = none }}
- Selected prime related sequences in OEIS.
- Fischer, R. Thema: Fermatquotient B^(P−1) == 1 (mod P^2) Template:In lang (Lists Wieferich primes in all bases up to 1052)
- {{#invoke:citation/CS1|citation
|CitationClass=web }}Template:Cbignore